Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Age-related dementia may begin with neurons' inability to dispose of unwanted proteins

06.03.2013
Research published in the March 2013 journal GENETICS explains a novel interaction between aging and how neurons dispose of unwanted proteins and why this impacts the rising prevalence of dementia with advancing age.

A team of European scientists from the University Medical Center Hamburg-Eppendorf (UKE) and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) at the University of Cologne in Germany has taken an important step closer to understanding the root cause of age-related dementia.

In research involving both worms and mice, they have found that age-related dementia is likely the result of a declining ability of neurons to dispose of unwanted aggregated proteins. As protein disposal becomes significantly less efficient with increasing age, the buildup of these unwanted proteins ultimately leads to the development and progression of dementia. This research appears in the March 2013 issue of the journal Genetics (http://www.genetics.org).

"By studying disease progression in dementia, specifically by focusing on mechanisms neurons use to dispose of unwanted proteins, we show how these are interconnected and how these mechanisms deteriorate over time," said Markus Glatzel, M.D., a researcher involved in the work from the Institute of Neuropathology at UKE in Hamburg, Germany. "This gives us a better understanding as to why dementias affect older persons; the ultimate aim is to use these insights to devise novel therapies to restore the full capacity of protein disposal in aged neurons."

To make this discovery, scientists carried out their experiments in both worm and mouse models that had a genetically-determined dementia in which the disease was caused by protein accumulation in neurons. In the worm model, researchers in the lab of Thorsten Hoppe, Ph.D., from the CECAD Cluster of Excellence could inactivate distinct routes used for the disposal of the unwanted proteins. Results provided valuable insight into the mechanisms that neurons use to cope with protein accumulation. These pathways were then assessed in young and aged mice. This study provides an explanation of why dementias exponentially increase with age. Additionally, neuron protein disposal methods may offer a therapeutic target for the development of drugs to treat and/or prevent dementias.

"This is an exciting study that helps us understand what's going wrong at a cellular level in age-related dementias," said Mark Johnston, Ph.D., Editor-in-Chief of the journal Genetics. "This research holds possibilities for future identification of substances that can prevent, stop, or reverse this cellular malfunction in humans."

CITATION: Schipanski, Angela, Sascha Lange, Alexandra Segref, Aljona Gutschmidt, David A. Lomas, Elena Miranda, Michaela Schweizer, Thorsten Hoppe, and Markus Glatzel A Novel Interaction between Aging and ER Overload in a Protein Conformational Dementia Genetics March 2013, 193: 865-876.

FUNDING: This work is supported by grants of the Deutsche Forschungsgemeinschaft (especially the FOR885 to M.G. and T.H., the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) to T.H. and GRK1459 to M.G.), the Medical Research Council (UK) to D.L., the Hans und Ilse Breuer Foundation to S.L., the Leibniz Center Infection Graduate School (Model systems for infectious diseases), and the Landesexzellenzinitiative of Hamburg (SDI-LEXI) to M.G.

ABOUT GENETICS: Since 1916, Genetics (http://www.genetics.org/) has covered high quality, original research on a range of topics bearing on inheritance, including population and evolutionary genetics, complex traits, developmental and behavioral genetics, cellular genetics, gene expression, genome integrity and transmission, and genome and systems biology. Genetics, a peer-reviewed, peer-edited journal of the Genetics Society of America is one of the world's most cited journals in genetics and heredity.

ABOUT GSA: Founded in 1931, the Genetics Society of America (GSA) is the professional membership organization for scientific researchers, educators, bioengineers, bioinformaticians and others interested in the field of genetics. Its nearly 5,000 members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level. The GSA is dedicated to promoting research in genetics and to facilitating communication among geneticists worldwide through its conferences, including the biennial conference on Model Organisms to Human Biology, an interdisciplinary meeting on current and cutting edge topics in genetics research, as well as annual and biennial meetings that focus on the genetics of particular organisms, including C. elegans, Drosophila, fungi, mice, yeast, and zebrafish. GSA publishes Genetics, a leading journal in the field and an online, open-access journal, G3: Genes|Genomes|Genetics. For more information about GSA, please visit http://www.genetics-gsa.org. Also follow GSA on Facebook at facebook.com/GeneticsGSA and on Twitter @GeneticsGSA.

Phyllis Edelman | EurekAlert!
Further information:
http://www.genetics-gsa.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>