Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

African Village Dogs Are Genetically Much More Diverse than Modern Breeds

06.08.2009
African village dogs are not a mixture of modern breeds but have directly descended from an ancestral pool of indigenous dogs, according to a Cornell-led genetic analysis of hundreds of semi-feral African village dogs.

That means that village dogs from most African regions are genetically distinct from non-native breeds and mixed-breed dogs. They also are more genetically diverse because they have not been subjected to strict breeding, which artificially selects genes and narrows breeds’ gene pools.

The study, published online Aug. 3 in the Proceedings of the National Academy of Sciences, sheds light on the poorly understood history of dog domestication. Future work may help explain the timing and locations of dog domestication and how dogs have adapted to the African environment, human settlements and dietary shifts.

“The genes of modern breeds all cluster together in one little group, but the African village dogs we sampled show much greater diversity genetically,” said lead author Adam Boyko, a research associate in the lab of Carlos Bustamante, the paper’s senior author and a professor of biological statistics and computational biology.

Field researchers from the University of California-Davis, who are part of the Cornell-based Village Dog Genetic Diversity Project, and others, including local veterinarians, sampled 318 village dogs from seven regions in Egypt, Uganda and Namibia. They also looked at breed dogs, including those reputed to be from Africa, Puerto Rican dogs and mixed-breed dogs from the United States.

Researchers and veterinarians also collected photos and information on weight, age, coat color and body measurements and sent blood samples for analysis to the Canine DNA Bank at the Baker Institute for Animal Health, part of Cornell’s College of Veterinary Medicine, which maintains a growing DNA archive of dogs worldwide.

Boyko, Bustamante and colleagues used a computer program to track genetic diversity in the samples. They found that the African village dogs are a mosaic of indigenous dogs descended from early migrants to Africa and non-native mixed-breed dogs. Such reputed African breeds as Pharaoh hounds and

Rhodesian ridgebacks clustered with non-native dogs, suggesting they originated from outside of Africa.

A previous study of village dog genetics confirmed that domesticated dogs likely originated from Eurasian wolves some 15,000 to 40,000 years ago, and reported that East Asian village dogs had more genetic diversity than any others sampled for the study, suggesting that dogs were first domesticated in East Asia. But the African village dogs analyzed in this study revealed similar genetic diversity, which raises doubt on the claim that dogs were first domesticated in East Asia.

As the group continues to collect samples from worldwide locations, including the Americas, the researchers will explore where modern breeds originated and how much genetic diversity has been lost with the development of modern breeds.

The researchers are interested in working with dog owners and local veterinarians to get more DNA samples of dogs from remote corners of the world. For more information: http://villagedogs.canmap.org.

Co-authors included Heidi Parker and Elaine Ostrander, geneticists at the National Human Genome Research Institute; Rory Todhunter, a professor of clinical sciences in Cornell's College of Veterinary Medicine; and Paul Jones, a genetics researcher at the Waltham Centre for Pet Nutrition in the United Kingdom, among others.

The study was funded by Cornell’s Center for Vertebrate Genomics, Department of Clinical Sciences and Baker Institute of Animal Health; the National Institutes of Health; and the National Science Foundation.

Joe Schwartz | Newswise Science News
Further information:
http://villagedogs.canmap.org
http://www.cornell.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>