Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Advantage: Youth – Fin Regenerative Capability Abates During Aging


Regenerative processes are the reason why wounds can heal and injured tissues can regrow. Some flatworms, salamanders and fishes even have the ability to completely rebuild whole bodily parts. In contrast, the regenerative capability of humans is quite limited and decreases upon aging.

Researchers from the Leibniz Institute for Age Research (FLI) in Jena, Germany now found that also in the short-lived killifish Nothobranchius furzeri, the regenerative capability to rebuild its caudal fin heavily lessens in old age.

Turquois killifish is able to fully regenerate injured caudal fins – but only in young age.

[Source: Nils Hartmann / FLI]

Many animals are able to completely rebuild functional, identical and complex bodily parts after injury or loss. Flatworms for example have the astonishing capability to rebuild a complete organism from only one part of their tail or head. Zebrafish can renew their caudal fins, and newts may rebuild whole legs within few months.

However, these are self-healing powers humans can only dream of. Only few tissues and organs in the human body are able to regenerate continuously, as the intestinal mucosa, the blood, the skeletal muscle, the liver or skin. With growing age, these limited capabilities even further diminish. It is in the focus of many current research projects to answer why and how this abatement occurs in age.

Researchers from the Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) in Jena, Germany now – for the first time – observed the effects of aging on the regenerative capability of turquois killifish (Nothobranchius furzeri) across its whole lifespan. They studied how aging influences the caudal fin regeneration and which cells are responsible for aging-induced alterations of regenerative capacities of the fish. The study results were published in the renowned journal “Aging Cell”.

“To analyze regenerative processes, the rebuilding of caudal fins is one of the most common models”, Prof. Dr. Christoph Englert, group leader at FLI, explains. “For our studies, we work with N. furzeri, which is the most short-lived vertebrate, which can be kept in a laboratory environment. Due to its lifespan of not more than 14 months, we decided to establish N. furzeri as new animal model for biomedical research on aging.” For the present study, cohorts of male fish aged 8, 20, 36, and 50-60 weeks were employed.

Regeneration in older age

“With growing age, we could observe a continuous abatement of the regenerative capability of the animals“, Dr. Nils Hartmann, researcher in Englert’s laboratory at FLI, explains. “While younger fish were able to fully renew their fin within four weeks, very old fish could in the end only rebuild half of it”. Already after three days, these differences in the rates of fin regrowth very statistically significant. “The results highlight the huge regenerative advantage younger fishes have compared to the elderly.”

What we can learn from the fish

In younger fin tissues, a high amount of proliferating cells were present, whereas in older fish, more dying (apoptotic) cells were found. The higher number of proliferating cells in younger fish results in a more active cell division, which could be the reason for the age-dependent regenerative differences.

These findings help to better understand the regenerative processes in vertebrates and to, eventually, answer the question why humans have such a limited regenerative capability. Because: “Although the caudal fin seems to have little in common with human tissues, it consists of many cell types relevant for the human body: bone, neurons, muscles, skin and connective tissue. Of course, research is still in the beginning. But through the establishment of this regeneration model, we will be able to learn more about cells and factors responsible for the abating regeneration in age. With N. furzeri, we are hopefully able to someday explain and improve the regenerative capability of humans”, the researchers sum up.

Wendler S, Hartmann N, Hoppe B, Englert C. Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri. Aging Cell 2015. doi: 10.1111/acel.12367.

Background information

The Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit

The Leibniz Association connects 89 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See for more information.

Weitere Informationen: - Website Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>