Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New advances in lipid genetics lead to better detection and prevention of major diseases

Studying the genetic make-up of different varieties of lipids (fatty molecules) in the blood plasma of an individual can lead to a better and earlier prediction of diseases such as diabetes, atherosclerosis, and heart disease, two researchers will tell the annual conference of the European Society of Human Genetics today (Monday 30 May).

In the first study, Dr. Joanne Curran from the Texas Biomedical Research Institute, San Antonio, USA, will tell the conference that lipidomic profiling will become a more reliable early indicator of individuals likely to develop diabetes than the more commonly used predictors such as blood glucose and insulin levels.

Dr. Curran and colleagues from the US and Australia measured 356 different lipid varieties from about 1100 Mexican American members of large extended families who were part of the San Antonio Family Heart Study. The Mexican American population is at high risk of diabetes with about 25% of this population ultimately becoming diabetic. At the start of the research, 861 of the individuals studied did not have diabetes. However, over the 10 year follow-up examined in the study, 110 individuals did develop the disease.

The scientists were able to isolate 128 different varieties of lipids that predicted the progression to diabetes by measuring the the lipidomic profiles of each individual at multiple timepoints during the follow-up period. "The single best predictor we found was a novel component called dihydroceramide (dhCer). This was substantially increased in people with diabetes. It is also heritable, and appears to be an independent risk factor unconnected to blood sugar and insulin levels," says Dr. Curran.

After uncovering the link between dhCer and diabetes, the team searched the genome to find locations that harboured genes that influence dhCer levels. They identified a region on chromosome 3 that appeared to contain a gene with substantial importance for the production of dhCer. "Through whole genome sequencing, we are now attempting to identify this causal gene in the hope that it will be informative in the understanding of the pathogenesis of diabetes, and also suggest new avenues for treatment," Dr. Curran says.

In the future, the researchers say, measurement of dhCer levels could become routine in the prediction of individuals likely to become diabetic. One of the difficulties of the current predictive methods is that they do not function until a patient is near to developing the disease. Being able to identify those at risk at the earliest stage would mean that individuals have plenty of time to make the lifestyle changes that could help them avoid the disease – through a change in diet, or increasing physical activity, for example.

"Currently one in ten US adults suffers from diabetes and recently the Centers for Disease Control has predicted that this will increase to one in three by 2050", says Dr. Curran. "We are optimistic that our discovery will lead to new treatments, but in the short-term the importance of finding out at an early stage whether any individual is likely to develop it cannot be overstated. A test based on dhCer levels will help to avoid the serious health effects that diabetes has in its own right, such as kidney failure, amputations, and blindness. It is, of course, also a risk for cardiovascular disease, so the health burden of this condition is enormous", she concludes.

In the second study, Dr. Sara Willems, from the Erasmus Medical Centre, Rotterdam, The Netherlands, will describe to the conference research carried out on the influence of common genetic lipid variants on atherosclerosis and related heart disease. "A recent genome-wide meta-analysis of more than 100,000 individuals identified a large number of genetic variants associated with levels of LDL (bad) cholesterol, HDL (good) cholesterol and triglycerides. These molecules are, at increased levels of LDL and triglycerides and decreased levels of HDL, important risk factors for cardiovascular disease", says Dr. Willems.

The researchers used risk scores from these genetic variants to test the hypothesis that their cumulative effects were associated with cardiovascular disease. For this purpose they used genetic data from more than 8000 individuals from the population-based Rotterdam Study and more than 2000 individuals participating in the Dutch family-based Erasmus Rucphen Family study.

They found an association between the LDL risk score and arterial wall thickness, and a strong association of this risk score with carotid plaque. These conditions can cause arterial blockage which leads to stroke. The same risk score was also associated with coronary heart disease.

"Our findings show that an accumulation of common genetic variants with small effects on lipid levels can have a significant effect on clinical and sub-clinical outcomes", says Dr. Aaron Isaacs, who led the project. "In the future, as our knowledge of genetic variation increases, effective pre-clinical genetic screening tools may be able to enhance the prediction and prevention of diseases such as cardiovascular disease."

New genetic variants influencing lipid levels are being identified all the time, the researchers say. "As new variants are discovered, we would like to be able to continue to test them, both singly and combined, for association with cardiovascular disease. The cost of these diseases to individuals, families, society and healthcare systems is immense", says Dr. Willems.

"Cardiovascular disease is the main cause of death in Europe, killing over 4 million people per year. It also represents 23% of the total disease burden (illness and death) across the continent. Managing cholesterol levels is important for prevention. This can be done early in life by effective treatment. We hope that our study, showing that common genetic variants play an important role in the occurrence of cardiovascular disease, marks a starting point for early prediction and prevention and may thus reduce the burden of disease," she concludes.

Mary Rice | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>