Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in Cancer Detection Featured in Microfluidics Journal

28.01.2010
New advances for the detection of cancer led by Rafael V. Davalos of the Virginia Tech-Wake Forest School of Biomedical Engineering and Science (SBES) are featured as the cover story in the January 19, 2010 Royal Society of Chemistry’s magazine, “Lab on a Chip,” the premier journal for researchers in microfluidics. http://www.rsc.org/Publishing/Journals/lc/index.asp

Microfluidics is the behavior of fluids at the microscale level. A relatively new technology, it had already shown promise in revolutionizing certain procedures in molecular biology and in proteomics, among other fields.

Building upon novel technology developed while working on Homeland Security projects at Sandia National Laboratories (SNL) as well as from his biomedical graduate student days at the University of California, Berkeley, Davalos, an assistant professor of biomedical engineering at Virginia Tech, is now creating unique microsystems that are showing considerable promise for the detection of cancer and for the study of the progression of this disease. http://www.sbes.vt.edu/people/faculty/primary/davalos.html

Specifically, Davalos helped engineer microsystems for the detection of water-borne pathogens using a technique called dielectrophoresis (DEP) in the early part of this decade. DEP separates and identifies cells and microparticles suspended in a medium based on their size and electrical properties.

Using the technology that can detect bacteria in water, Davalos continues to work with his colleague at Sandia, Blake A. Simmons, vice president, Deconstruction of the Joint BioEnergy Institute and manager of the Energy Systems Department at SNL. Together, they hypothesized that the technology could be reconfigured to detect cancer cells by injecting a blood or saliva sample into their microfluidic chip to screen for cancer, based on the cancer cells electrical signatures.

“Unfortunately, the direct translation was not possible due to applying high electric fields in conductive physiological solutions such as blood as compared to tap water,” Davalos said. However, the lessons learned and engineering that went into developing robust and reliable microsystems at SNL was instrumental in motivating his team to come up with a viable solution – called contactless dielectrophoresis (cDEP).

Today, Davalos, an award-winning assistant professor of biomedical engineering at Virginia Tech, along with his graduate students and co-authors of the paper, Hadi Shafiee, John Caldwell, Erin A. Henslee, and Michael Sano, all of Blacksburg, have found a way to provide “the non-uniform electric field required for DEP that does not require electrodes to contact the sample fluid.”

They named their variation cDEP since it does not require electrodes to contact the sample fluid; instead electrodes are capacitively coupled to a fluidic channel in his device through barriers that act as insulators. High-frequency electric fields are then applied to these electrodes, inducing an electric field in a channel in the device. Their initial studies illustrate the potential of this technique to identify cells through their unique electrical responses without fear of contamination from electrodes or significant joule heating.

The significance of this work is it “enables a robust method to screen for targeted cells based on the dielectrophoretic properties from an entire blood sample rather than a few microliters,” Davalos, the director of Virginia Tech’s Bioelectromechanical Systems Laboratory, explained.

The paper accepted by the publication “Lab on a Chip” is titled ”Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP).”

“With the microfluidic devices, the researchers are able to selectively isolate a targeted cell type and let the others float by,” Davalos, the 2006 recipient of the Hispanic Engineer National Achievement Award for Most Promising Engineer or Scientist, said. The behavior of living cancer cells was observed to be significantly different from those of their dead counterparts within the device.

“I’m really proud of my students. Our vision would not have been realized without their ability to engineer some crazy ideas,” he said.

Davalos’ work in this area is supported by the Virginia Tech Institute for Critical Technology and Applied Science. http://www.ictas.vt.edu/index.shtml

Virginia Tech’s College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation’s third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology. http://www.eng.vt.edu/main/index.php

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu
http://www.eng.vt.edu/main/index.php

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>