Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advances in Cancer Detection Featured in Microfluidics Journal

28.01.2010
New advances for the detection of cancer led by Rafael V. Davalos of the Virginia Tech-Wake Forest School of Biomedical Engineering and Science (SBES) are featured as the cover story in the January 19, 2010 Royal Society of Chemistry’s magazine, “Lab on a Chip,” the premier journal for researchers in microfluidics. http://www.rsc.org/Publishing/Journals/lc/index.asp

Microfluidics is the behavior of fluids at the microscale level. A relatively new technology, it had already shown promise in revolutionizing certain procedures in molecular biology and in proteomics, among other fields.

Building upon novel technology developed while working on Homeland Security projects at Sandia National Laboratories (SNL) as well as from his biomedical graduate student days at the University of California, Berkeley, Davalos, an assistant professor of biomedical engineering at Virginia Tech, is now creating unique microsystems that are showing considerable promise for the detection of cancer and for the study of the progression of this disease. http://www.sbes.vt.edu/people/faculty/primary/davalos.html

Specifically, Davalos helped engineer microsystems for the detection of water-borne pathogens using a technique called dielectrophoresis (DEP) in the early part of this decade. DEP separates and identifies cells and microparticles suspended in a medium based on their size and electrical properties.

Using the technology that can detect bacteria in water, Davalos continues to work with his colleague at Sandia, Blake A. Simmons, vice president, Deconstruction of the Joint BioEnergy Institute and manager of the Energy Systems Department at SNL. Together, they hypothesized that the technology could be reconfigured to detect cancer cells by injecting a blood or saliva sample into their microfluidic chip to screen for cancer, based on the cancer cells electrical signatures.

“Unfortunately, the direct translation was not possible due to applying high electric fields in conductive physiological solutions such as blood as compared to tap water,” Davalos said. However, the lessons learned and engineering that went into developing robust and reliable microsystems at SNL was instrumental in motivating his team to come up with a viable solution – called contactless dielectrophoresis (cDEP).

Today, Davalos, an award-winning assistant professor of biomedical engineering at Virginia Tech, along with his graduate students and co-authors of the paper, Hadi Shafiee, John Caldwell, Erin A. Henslee, and Michael Sano, all of Blacksburg, have found a way to provide “the non-uniform electric field required for DEP that does not require electrodes to contact the sample fluid.”

They named their variation cDEP since it does not require electrodes to contact the sample fluid; instead electrodes are capacitively coupled to a fluidic channel in his device through barriers that act as insulators. High-frequency electric fields are then applied to these electrodes, inducing an electric field in a channel in the device. Their initial studies illustrate the potential of this technique to identify cells through their unique electrical responses without fear of contamination from electrodes or significant joule heating.

The significance of this work is it “enables a robust method to screen for targeted cells based on the dielectrophoretic properties from an entire blood sample rather than a few microliters,” Davalos, the director of Virginia Tech’s Bioelectromechanical Systems Laboratory, explained.

The paper accepted by the publication “Lab on a Chip” is titled ”Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP).”

“With the microfluidic devices, the researchers are able to selectively isolate a targeted cell type and let the others float by,” Davalos, the 2006 recipient of the Hispanic Engineer National Achievement Award for Most Promising Engineer or Scientist, said. The behavior of living cancer cells was observed to be significantly different from those of their dead counterparts within the device.

“I’m really proud of my students. Our vision would not have been realized without their ability to engineer some crazy ideas,” he said.

Davalos’ work in this area is supported by the Virginia Tech Institute for Critical Technology and Applied Science. http://www.ictas.vt.edu/index.shtml

Virginia Tech’s College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation’s third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology. http://www.eng.vt.edu/main/index.php

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu
http://www.eng.vt.edu/main/index.php

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>