Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Advances in Cancer Detection Featured in Microfluidics Journal

New advances for the detection of cancer led by Rafael V. Davalos of the Virginia Tech-Wake Forest School of Biomedical Engineering and Science (SBES) are featured as the cover story in the January 19, 2010 Royal Society of Chemistry’s magazine, “Lab on a Chip,” the premier journal for researchers in microfluidics.

Microfluidics is the behavior of fluids at the microscale level. A relatively new technology, it had already shown promise in revolutionizing certain procedures in molecular biology and in proteomics, among other fields.

Building upon novel technology developed while working on Homeland Security projects at Sandia National Laboratories (SNL) as well as from his biomedical graduate student days at the University of California, Berkeley, Davalos, an assistant professor of biomedical engineering at Virginia Tech, is now creating unique microsystems that are showing considerable promise for the detection of cancer and for the study of the progression of this disease.

Specifically, Davalos helped engineer microsystems for the detection of water-borne pathogens using a technique called dielectrophoresis (DEP) in the early part of this decade. DEP separates and identifies cells and microparticles suspended in a medium based on their size and electrical properties.

Using the technology that can detect bacteria in water, Davalos continues to work with his colleague at Sandia, Blake A. Simmons, vice president, Deconstruction of the Joint BioEnergy Institute and manager of the Energy Systems Department at SNL. Together, they hypothesized that the technology could be reconfigured to detect cancer cells by injecting a blood or saliva sample into their microfluidic chip to screen for cancer, based on the cancer cells electrical signatures.

“Unfortunately, the direct translation was not possible due to applying high electric fields in conductive physiological solutions such as blood as compared to tap water,” Davalos said. However, the lessons learned and engineering that went into developing robust and reliable microsystems at SNL was instrumental in motivating his team to come up with a viable solution – called contactless dielectrophoresis (cDEP).

Today, Davalos, an award-winning assistant professor of biomedical engineering at Virginia Tech, along with his graduate students and co-authors of the paper, Hadi Shafiee, John Caldwell, Erin A. Henslee, and Michael Sano, all of Blacksburg, have found a way to provide “the non-uniform electric field required for DEP that does not require electrodes to contact the sample fluid.”

They named their variation cDEP since it does not require electrodes to contact the sample fluid; instead electrodes are capacitively coupled to a fluidic channel in his device through barriers that act as insulators. High-frequency electric fields are then applied to these electrodes, inducing an electric field in a channel in the device. Their initial studies illustrate the potential of this technique to identify cells through their unique electrical responses without fear of contamination from electrodes or significant joule heating.

The significance of this work is it “enables a robust method to screen for targeted cells based on the dielectrophoretic properties from an entire blood sample rather than a few microliters,” Davalos, the director of Virginia Tech’s Bioelectromechanical Systems Laboratory, explained.

The paper accepted by the publication “Lab on a Chip” is titled ”Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP).”

“With the microfluidic devices, the researchers are able to selectively isolate a targeted cell type and let the others float by,” Davalos, the 2006 recipient of the Hispanic Engineer National Achievement Award for Most Promising Engineer or Scientist, said. The behavior of living cancer cells was observed to be significantly different from those of their dead counterparts within the device.

“I’m really proud of my students. Our vision would not have been realized without their ability to engineer some crazy ideas,” he said.

Davalos’ work in this area is supported by the Virginia Tech Institute for Critical Technology and Applied Science.

Virginia Tech’s College of Engineering is internationally recognized for its excellence in 14 engineering disciplines and computer science. As the nation’s third largest producer of engineers with baccalaureate degrees, undergraduates benefit from an innovative curriculum that provides a hands-on, minds-on approach to engineering education. It complements classroom instruction with two unique design-and-build facilities and a strong Cooperative Education Program. With more than 50 research centers and numerous laboratories, the college offers its 2,000 graduate students opportunities in advanced fields of study, including biomedical engineering, state-of-the-art microelectronics, and nanotechnology.

Lynn A. Nystrom | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>