Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced technology for gene expression analysis can facilitate drug development

07.10.2013
Researchers from the RIKEN Center for Life Science Technologies report a new method to monitor and quantify the activity of gene promoters during the response to a drug, using the advanced gene expression analysis method CAGE followed by single-molecule sequencing.

When developing new drugs, monitoring cellular responses to candidate compounds is essential for assessing their efficacy and safety. Researchers from the RIKEN Center for Life Science Technologies report a new method to monitor and quantify the activity of gene promoters during the response to a drug, using the advanced gene expression analysis method CAGE followed by single-molecule sequencing. This research paves the way to a more precise analysis of cellular responses to drugs, at the level of individual promoters.

The study is published this week in the journal CPT: Pharmacometrics & Systems Pharmacology.

Microarray-based technologies are widely used to monitor cellular changes in response to drug administration at the level of genes. However, microarrays have several limitations due to the fact that they rely on pre-designed oligonucleotide probes and detection based on hybridization.

In order to circumvent the limitations imposed by the use of microarray-based technology for the development of new drugs, Dr Harukazu Suzuki and his team at CLST developed a new technique combining Cap Analysis of Gene Expression (CAGE) with 3rd generation, single-molecule sequencing.

CAGE is a method developed at RIKEN to comprehensively map human transcription start sites and their promoters, and quantify the set of mRNAs in a cell, also called the transcriptome.

During CAGE the 5’-end of mRNAs is sequenced in order to produce a series of 20-30 nucleotide sequences that can then be mapped onto the genome and provide information about the level of expression of genes.

Dr Suzuki and his team used CAGE, combined with a single-molecule sequencer, to monitor the effect of three drugs, U0126, wortmannin and gefitinib on human breast cancer cells.

U0126 and wortmannin are known to inhibit the Ras-ERK and phosphatidylinositol-3-kinase (PI3K)-Akt signalling pathways within cells. Gefinitib is a potent inhibitor of the epidermal growth factor receptor kinase (EGFR kinase) and mainly inhibits the Ras-ERK and PI3K-Akt pathways downstream of EGFR.

The researchers identified a distinct set of promoters that were affected by low doses of the drugs, and therefore showed sensitivity to a weak inhibition of the Ras-ERK and PI3K-Akt signal-transduction pathways. This level of precision would would have been very difficult to achieve using microarray-based profiling.

Furthermore, a quantitative analysis showed that the inhibitory profiles of both U0126 and wortmannin are constitutive components of the transcriptome profile obtained by inhibition of the EGFR kinase. Using a regression model, the researchers were able to quantitatively predict the promoter activity profile of gefitinib, based on the U0126 and wortmannin profiles.

These results demonstrate the potential utility of highly quantitative promoter activity profiling in drug research.

“Quantitative transcriptome analysis is potentially widely applicable to determine the target proteins and action mechanisms of uncharacterized compounds,” concludes Dr Suzuki. “Our study paves the wayfor quantitative analysis of drug responses at the promoter level, and moreover, is potentially applicable for the evaluation of combinatorial or serial drug treatment in a clinical setting,” he adds.

This press release is available online at: http://www.riken.jp/en/pr/press/2013/20131003_3/

Dr Suzuki is available for interviews on the phone at +81 45-503-9222 or by email at harukazu@gsc.riken.jp

Alternatively please contact:
Juliette Savin
RIKEN
Tel: +81-(0)48-462-1225
Email: pr@riken.jp
Reference:
Kazuhiro Kajiyama et al.
“Capturing drug responses by quantitative promoter activity profiling”
CPT: Pharmacometrics & Systems Pharmacology, 2013 DOI: 10.1038/psp.2013.53
The paper is available at
http://www.nature.com/psp/journal/v2/n9/full/psp201353a.html
About RIKEN
RIKEN is Japan's flagship research institute for basic and applied
research. Over 2500 papers by RIKEN researchers are published every year
in reputable scientific and technical journals, covering topics ranging
across a broad spectrum of disciplines including physics, chemistry,
biology, medical science and engineering. RIKEN's advanced research
environment and strong emphasis on interdisciplinary collaboration has
earned an unparalleled reputation for scientific excellence in Japan and
around the world.
About the Center for Life Science technologies
The RIKEN Center for Life Science Technologies aims to develop key
technologies for breakthroughs in the medical and pharmaceutical
applications of life science as well as conduct ground-breaking research
and development for the next-generation life sciences.

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>