Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advance in understanding cellulose synthesis

16.06.2009
Cellulose is a fibrous molecule that makes up plant cell walls, gives plants shape and form and is a target of renewable, plant-based biofuels research.

But how it forms, and thus how it can be modified to design energy-rich crops, is not well understood. Now a study led by researchers at the Carnegie Institution's Department of Plant Biology has discovered that the underlying protein network that provides the scaffolding for cell-wall structure is also the traffic cop for delivering the critical growth-promoting molecules where needed.

The research, conducted in collaboration with colleagues at Wageningen University in the Netherlands and published in the advance online publication (AOP) of Nature Cell Biology on June 14th, is a significant step for understanding how the enzymes that make cellulose and determine plant cell shape arrive at the appropriate location in the cell to do their job.

"Cellulose is the most abundant reservoir of renewable hydrocarbons in the world," remarked Carnegie's David Ehrhardt, a coauthor. "To understand how cellulose might be modified and how plant development might be manipulated to improve crop plants as efficient sources of energy, we need to first understand the cellular processes that create cellulose and build cell walls."

Plant cells have rigid walls that cannot easily change shape. There are many cell types, spiky trichomes to fend off bugs and sausage-shaped guard cells that regulate the plant's breathing pores, as examples. In a previous study using the model plant Arabidopsis, Ehrhardt and team used groundbreaking imaging techniques to watch the molecules that create this array of shapes. It provided the first direct evidence for a functional connection between synthesis of the cell wall and an array of protein fibers—called microtubules—that provide the scaffolding that allow diverse plant cell shapes to be created as the cell wall pushes outward.

In that study, the group engineered plants to produce a fluorescent version of cellulose synthase, the enzyme that creates cellulose fibers. They also included a fluorescent version of tubulin, the protein from which microtubules are built. Using advanced imaging techniques, they tracked the motion of single fluorescent molecules, and found that cellulose synthase moves along "tracks" defined by the microtubules.

In this paper, the researchers looked at how the association between the cellulose synthase complexes and microtubules begins. The scientists were able to watch individual cellulose synthase complexes as they were delivered to the plasma membrane—the permeable film that surrounds the cell, but is inside the cell wall— and found that the microtubules not only guide where the complexes go as they build the cell wall, but microtubules also organize the trafficking and delivery of the cellulose synthase complexes to their place of action.

They also looked at the role in trafficking of a structural element called the actin cytoskeleton that helps move organelles and maintains the cell's shape. They found that it appears to be required for the general distribution of the cellulose synthase complexes, whereas microtubules appear to be required for final positioning.

When there is a disruption of the complexes through a stressor such as a rapid change in water movement (osmotic stress), active cellulose synthase complexes disappear and organelles accumulate just under the plasma membrane. These organelles contain cellulose synthase and are tethered to the microtubules by a novel mechanism. Previously Ehrhardt and team found that plant microtubules move by shortening at one end while lengthening at the other end. They do this one tubulin molecule at a time, in a process the researchers call treadmilling. They now think that the tethering discovered in this research allows the cellulose synthase-containing organelles to stay with the treadmilling microtubules for prolonged periods in times of stress. They found that when the stress abates, these organelles deliver the cellulose synthase to the membrane.

This work was supported by grants from the National Science Foundation (0524334) and the EU Commission (FP6 2004-NEST C1 028974).

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

David Ehrhardt | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>