Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advance in understanding cellulose synthesis

16.06.2009
Cellulose is a fibrous molecule that makes up plant cell walls, gives plants shape and form and is a target of renewable, plant-based biofuels research.

But how it forms, and thus how it can be modified to design energy-rich crops, is not well understood. Now a study led by researchers at the Carnegie Institution's Department of Plant Biology has discovered that the underlying protein network that provides the scaffolding for cell-wall structure is also the traffic cop for delivering the critical growth-promoting molecules where needed.

The research, conducted in collaboration with colleagues at Wageningen University in the Netherlands and published in the advance online publication (AOP) of Nature Cell Biology on June 14th, is a significant step for understanding how the enzymes that make cellulose and determine plant cell shape arrive at the appropriate location in the cell to do their job.

"Cellulose is the most abundant reservoir of renewable hydrocarbons in the world," remarked Carnegie's David Ehrhardt, a coauthor. "To understand how cellulose might be modified and how plant development might be manipulated to improve crop plants as efficient sources of energy, we need to first understand the cellular processes that create cellulose and build cell walls."

Plant cells have rigid walls that cannot easily change shape. There are many cell types, spiky trichomes to fend off bugs and sausage-shaped guard cells that regulate the plant's breathing pores, as examples. In a previous study using the model plant Arabidopsis, Ehrhardt and team used groundbreaking imaging techniques to watch the molecules that create this array of shapes. It provided the first direct evidence for a functional connection between synthesis of the cell wall and an array of protein fibers—called microtubules—that provide the scaffolding that allow diverse plant cell shapes to be created as the cell wall pushes outward.

In that study, the group engineered plants to produce a fluorescent version of cellulose synthase, the enzyme that creates cellulose fibers. They also included a fluorescent version of tubulin, the protein from which microtubules are built. Using advanced imaging techniques, they tracked the motion of single fluorescent molecules, and found that cellulose synthase moves along "tracks" defined by the microtubules.

In this paper, the researchers looked at how the association between the cellulose synthase complexes and microtubules begins. The scientists were able to watch individual cellulose synthase complexes as they were delivered to the plasma membrane—the permeable film that surrounds the cell, but is inside the cell wall— and found that the microtubules not only guide where the complexes go as they build the cell wall, but microtubules also organize the trafficking and delivery of the cellulose synthase complexes to their place of action.

They also looked at the role in trafficking of a structural element called the actin cytoskeleton that helps move organelles and maintains the cell's shape. They found that it appears to be required for the general distribution of the cellulose synthase complexes, whereas microtubules appear to be required for final positioning.

When there is a disruption of the complexes through a stressor such as a rapid change in water movement (osmotic stress), active cellulose synthase complexes disappear and organelles accumulate just under the plasma membrane. These organelles contain cellulose synthase and are tethered to the microtubules by a novel mechanism. Previously Ehrhardt and team found that plant microtubules move by shortening at one end while lengthening at the other end. They do this one tubulin molecule at a time, in a process the researchers call treadmilling. They now think that the tethering discovered in this research allows the cellulose synthase-containing organelles to stay with the treadmilling microtubules for prolonged periods in times of stress. They found that when the stress abates, these organelles deliver the cellulose synthase to the membrane.

This work was supported by grants from the National Science Foundation (0524334) and the EU Commission (FP6 2004-NEST C1 028974).

The Carnegie Institution for Science (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

David Ehrhardt | EurekAlert!
Further information:
http://www.stanford.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>