Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advance could speed use of genetic material RNA in nanotechnology

20.01.2011
Scientists are reporting an advance in overcoming a major barrier to the use of the genetic material RNA in nanotechnology — the field that involves building machines thousands of times smaller than the width of a human hair and now is dominated by its cousin, DNA. Their findings, which could speed the use of RNA nanotechnology for treating disease, appear in the monthly journal ACS Nano.

Peixuan Guo and colleagues point out that DNA, the double-stranded genetic blueprint of life, and RNA, its single-stranded cousin, share common chemical features that can serve as building blocks for making nanostructures and nanodevices. In some ways, RNA even has advantages over DNA. The field of DNA nanotechnology is already well-established, they note.

The decade-old field of RNA nanotechnology shows great promise, with potential applications in the treatment of cancer, viral, and genetic diseases. However, the chemical instability of RNA and its tendency to breakdown in the presence of enzymes have slowed progress in the field.

The scientists describe development of a highly stable RNA nanoparticle. They tested its ability to power the nano-sized biological motor of a certain bacteriophage — a virus that infects bacteria — that operates using molecules of RNA. The modified RNA showed excellent biological activity similar, even in the presence of high concentrations of enzymes that normally breakdown RNA. The finding show that "it is practical to produce RNase (an enzyme that degrades RNA) resistant, biologically active, and stable RNA for application in nanotechnology," the article notes.

The authors acknowledged funding from the National Institutes of Health.

ARTICLE FOR IMMEDIATE RELEASE
"Fabrication of Stable and RNase-Resistant RNA Nanoparticles Active in Gearing the Nanomotors for Viral DNA Packaging"
DOWNLOAD FULL TEXT ARTICLE
http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/nn1024658
CONTACT:
Peixuan Guo, Ph.D.
Nanobiomedical Center
College of Engineering and Applied Sciences & College of Medicine
University of Cincinnati
Cincinnati, Ohio 45267
Phone: 513-558-0041
Fax: 513-558-6079
Email: guopn@ucmail.uc.edu

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Beer can lift your spirits
26.09.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Bacterial Nanosized Speargun Works Like a Power Drill
26.09.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>