Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adhesive Seals Blood Vessels

14.05.2009
Due to inflammations, blood vessels may become leaky: Blood plasma leaks into the tissue which might involve serious complications. Researchers from the University of Würzburg have now developed a kind of molecular adhesive sealing hyperpermeable blood vessels.

Inside, blood vessels are lined with a single layer of cells. On their surface, these cells bear specific adhesive proteins by means of which they stick close to each other. Normally, this ensures a perfect sealing of the blood vessels.

The most important adhesive protein is the so-called VE-cadherin. It can be destabilized due to different pathological conditions, e.g. due to a sepsis when bacteria have penetrated into the bloodstream and spread within the whole body. This infection causes inflammatory processes which involve leaks in the blood vessel lining. Blood plasma leaks which might result in life-threatening organ swellings as well as tissue bleeding.

To date, there is no means to seal hyperpermeable blood vessels. However, this would be very helpful e.g. for treating patients with pulmonary edema or allergy-induced organ swelling.

Small peptides ensure adhesion

Here, researchers from the "Institut für Anatomie und Zellbiologie" (Institute of Anatomy and Cell Biology) of the University of Würzburg succeeded in taking a first step forward: They have developed small peptide molecules which increase adhesion between vital VE-cadherin adhesive proteins. Thus, the vascular lining is stabilized against inflammatory stimuli.

How do the peptide molecules work? They work just like an adhesive: They bridge the adhesive proteins with each other, because they are designed following the example of the structure by means of which the VE-cadherins stick close to each other. They have a crosslinking effect which they deploy as tandem peptides arranged one after the other - similar to a medical strip with two adhesive ends.

Still far away from application in humans

"These results offer new approaches for the treatment of vascular hyperpermeability", says Prof. Detlev Drenckhahn. However, it is still a long way to go until an application in humans is possible, because the current structure of the molecules is not suitable for such an application.

According to Prof. Drenckhahn it is always difficult to apply peptides to humans, because an unexpected immune response is possible. The next step for the researchers from Würzburg now is to find other molecules resembling the peptides in structure and effect.

Publication in the Journal of Cell Science

The leading researchers from Würzburg Wolfgang-Moritz Heupel, Jens Waschke and Detlev Drenckhahn describe their new approach in the current issue of the Journal of Cell Science. They have worked together with the structural biologist Thomas Müller from the Biocenter who has developed the peptide molecules on the computer. The peptide molecules have been tested in different systems together with the chemist Athina Hübner, the medical scientist Nicolas Schlegel and other employees of the "Institut für Anatomie und Zellbiologie" (Institute of Anatomy and Cell Biology).

The efficiency of the novel molecules could be shown for isolated VE-cadherin adhesive proteins as well as in vivo by means of atomic force microscopy (AFM): If the protective "adhesive" is injected into the blood vessels of mice, their vascular lining does not break down when being exposed to an experimentally generated inflammatory stimulus.

"Endothelial barrier stabilization by a cyclic tandem peptide targeting VE-cadherin transinteraction in vitro and in vivo", Wolfgang-Moritz Heupel, Athina Efthymiadis, Nicolas Schlegel, Thomas Müller, Yvonne Baumer, Werner Baumgartner, Detlev Drenckhahn, Jens Waschke; J Cell Sci. 2009 May 15;122(Pt 10):1616-1625, doi: 10.1242/jcs.040212

Further information

Prof. Dr. Detlev Drenckhahn, "Institut für Anatomie und Zellbiologie", University of Würzburg, phone: +49 (0)931 31-2702, drenckhahn@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>