Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adhesive Seals Blood Vessels

14.05.2009
Due to inflammations, blood vessels may become leaky: Blood plasma leaks into the tissue which might involve serious complications. Researchers from the University of Würzburg have now developed a kind of molecular adhesive sealing hyperpermeable blood vessels.

Inside, blood vessels are lined with a single layer of cells. On their surface, these cells bear specific adhesive proteins by means of which they stick close to each other. Normally, this ensures a perfect sealing of the blood vessels.

The most important adhesive protein is the so-called VE-cadherin. It can be destabilized due to different pathological conditions, e.g. due to a sepsis when bacteria have penetrated into the bloodstream and spread within the whole body. This infection causes inflammatory processes which involve leaks in the blood vessel lining. Blood plasma leaks which might result in life-threatening organ swellings as well as tissue bleeding.

To date, there is no means to seal hyperpermeable blood vessels. However, this would be very helpful e.g. for treating patients with pulmonary edema or allergy-induced organ swelling.

Small peptides ensure adhesion

Here, researchers from the "Institut für Anatomie und Zellbiologie" (Institute of Anatomy and Cell Biology) of the University of Würzburg succeeded in taking a first step forward: They have developed small peptide molecules which increase adhesion between vital VE-cadherin adhesive proteins. Thus, the vascular lining is stabilized against inflammatory stimuli.

How do the peptide molecules work? They work just like an adhesive: They bridge the adhesive proteins with each other, because they are designed following the example of the structure by means of which the VE-cadherins stick close to each other. They have a crosslinking effect which they deploy as tandem peptides arranged one after the other - similar to a medical strip with two adhesive ends.

Still far away from application in humans

"These results offer new approaches for the treatment of vascular hyperpermeability", says Prof. Detlev Drenckhahn. However, it is still a long way to go until an application in humans is possible, because the current structure of the molecules is not suitable for such an application.

According to Prof. Drenckhahn it is always difficult to apply peptides to humans, because an unexpected immune response is possible. The next step for the researchers from Würzburg now is to find other molecules resembling the peptides in structure and effect.

Publication in the Journal of Cell Science

The leading researchers from Würzburg Wolfgang-Moritz Heupel, Jens Waschke and Detlev Drenckhahn describe their new approach in the current issue of the Journal of Cell Science. They have worked together with the structural biologist Thomas Müller from the Biocenter who has developed the peptide molecules on the computer. The peptide molecules have been tested in different systems together with the chemist Athina Hübner, the medical scientist Nicolas Schlegel and other employees of the "Institut für Anatomie und Zellbiologie" (Institute of Anatomy and Cell Biology).

The efficiency of the novel molecules could be shown for isolated VE-cadherin adhesive proteins as well as in vivo by means of atomic force microscopy (AFM): If the protective "adhesive" is injected into the blood vessels of mice, their vascular lining does not break down when being exposed to an experimentally generated inflammatory stimulus.

"Endothelial barrier stabilization by a cyclic tandem peptide targeting VE-cadherin transinteraction in vitro and in vivo", Wolfgang-Moritz Heupel, Athina Efthymiadis, Nicolas Schlegel, Thomas Müller, Yvonne Baumer, Werner Baumgartner, Detlev Drenckhahn, Jens Waschke; J Cell Sci. 2009 May 15;122(Pt 10):1616-1625, doi: 10.1242/jcs.040212

Further information

Prof. Dr. Detlev Drenckhahn, "Institut für Anatomie und Zellbiologie", University of Würzburg, phone: +49 (0)931 31-2702, drenckhahn@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>