Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Adhesive Seals Blood Vessels

14.05.2009
Due to inflammations, blood vessels may become leaky: Blood plasma leaks into the tissue which might involve serious complications. Researchers from the University of Würzburg have now developed a kind of molecular adhesive sealing hyperpermeable blood vessels.

Inside, blood vessels are lined with a single layer of cells. On their surface, these cells bear specific adhesive proteins by means of which they stick close to each other. Normally, this ensures a perfect sealing of the blood vessels.

The most important adhesive protein is the so-called VE-cadherin. It can be destabilized due to different pathological conditions, e.g. due to a sepsis when bacteria have penetrated into the bloodstream and spread within the whole body. This infection causes inflammatory processes which involve leaks in the blood vessel lining. Blood plasma leaks which might result in life-threatening organ swellings as well as tissue bleeding.

To date, there is no means to seal hyperpermeable blood vessels. However, this would be very helpful e.g. for treating patients with pulmonary edema or allergy-induced organ swelling.

Small peptides ensure adhesion

Here, researchers from the "Institut für Anatomie und Zellbiologie" (Institute of Anatomy and Cell Biology) of the University of Würzburg succeeded in taking a first step forward: They have developed small peptide molecules which increase adhesion between vital VE-cadherin adhesive proteins. Thus, the vascular lining is stabilized against inflammatory stimuli.

How do the peptide molecules work? They work just like an adhesive: They bridge the adhesive proteins with each other, because they are designed following the example of the structure by means of which the VE-cadherins stick close to each other. They have a crosslinking effect which they deploy as tandem peptides arranged one after the other - similar to a medical strip with two adhesive ends.

Still far away from application in humans

"These results offer new approaches for the treatment of vascular hyperpermeability", says Prof. Detlev Drenckhahn. However, it is still a long way to go until an application in humans is possible, because the current structure of the molecules is not suitable for such an application.

According to Prof. Drenckhahn it is always difficult to apply peptides to humans, because an unexpected immune response is possible. The next step for the researchers from Würzburg now is to find other molecules resembling the peptides in structure and effect.

Publication in the Journal of Cell Science

The leading researchers from Würzburg Wolfgang-Moritz Heupel, Jens Waschke and Detlev Drenckhahn describe their new approach in the current issue of the Journal of Cell Science. They have worked together with the structural biologist Thomas Müller from the Biocenter who has developed the peptide molecules on the computer. The peptide molecules have been tested in different systems together with the chemist Athina Hübner, the medical scientist Nicolas Schlegel and other employees of the "Institut für Anatomie und Zellbiologie" (Institute of Anatomy and Cell Biology).

The efficiency of the novel molecules could be shown for isolated VE-cadherin adhesive proteins as well as in vivo by means of atomic force microscopy (AFM): If the protective "adhesive" is injected into the blood vessels of mice, their vascular lining does not break down when being exposed to an experimentally generated inflammatory stimulus.

"Endothelial barrier stabilization by a cyclic tandem peptide targeting VE-cadherin transinteraction in vitro and in vivo", Wolfgang-Moritz Heupel, Athina Efthymiadis, Nicolas Schlegel, Thomas Müller, Yvonne Baumer, Werner Baumgartner, Detlev Drenckhahn, Jens Waschke; J Cell Sci. 2009 May 15;122(Pt 10):1616-1625, doi: 10.1242/jcs.040212

Further information

Prof. Dr. Detlev Drenckhahn, "Institut für Anatomie und Zellbiologie", University of Würzburg, phone: +49 (0)931 31-2702, drenckhahn@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>