Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Addressing pain and disease on the fly

07.12.2011
How fruit flies can teach us about curing chronic pain and halting mosquito-borne diseases

Studies of a protein that fruit flies use to sense heat and chemicals may someday provide solutions to human pain and the control of disease-spreading mosquitoes.

In the current issue of the journal Nature, biologist Paul Garrity of the National Center for Behavioral Genomics at Brandeis University and his team, spearheaded by KyeongJin Kang and Vince Panzano in the Garrity lab, report how fruit flies distinguish the warmth of a summer day from the pungency of wasabi by using TRPA1, a protein whose human relative is critical for contolling pain and inflammation.

In earlier research Garrity’s team showed that flies, like humans, sense chemical irritants with TRPA1, indicating an ancient origin for harmful chemical sensing. In 2008, the team demonstrated that this protein serves a second function in flies: sensing warmth.

Gentle warmth and nasty chemicals trigger distinct responses. How can both responses rely on the same sensor? The team has now discovered that there is an easy answer. Insects actually make two forms of TRPA1, one specialized for each task.

What is the significance of this new research?

Such TRPA1 specialization has implications for devising bug sprays and traps to combat the transmission of diseases like malaria, dengue and West Nile virus. “This work on TRPA1 can explain how blood-sucking insects like mosquitoes discriminate noxious chemicals, which repel them, from the warmth of a human, which attracts them,” says Garrity. “By activating one kind of TRPA1 you might be able to deter mosquitoes from biting you, while activating the other kind of TRPA1 might lure mosquitoes to a trap.”

These findings also have implications for understanding the way that human damage-sensing neurons work, explains Garrity. Since human TRPA1 is a drug target aimed at treating diseases such as asthma, migraines, and chronic pain, Garrity says it’s important to understand how TRPA1 proteins operate.

“Fruit flies are easy to work with in the lab and this lets us test hypotheses about how TRPA1 operates quickly and relatively cheaply.” Says Garrity. “Fortunately, the function of TRPA1 seems evolutionarily ancient and conserved from flies to mosquitoes to humans, so one can gain insights of general biomedical relevance using flies.”

“Untreatable chronic pain and insect-borne diseases are two major human health problems,” says Garrity. “When you think about basic research translating into treatments to help people, work in these areas has tremendous potential for easing human misery.”

The study was funded by the National Science Foundation, National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke.

Susan Chaityn Lebovits | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>