Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Addressing pain and disease on the fly

07.12.2011
How fruit flies can teach us about curing chronic pain and halting mosquito-borne diseases

Studies of a protein that fruit flies use to sense heat and chemicals may someday provide solutions to human pain and the control of disease-spreading mosquitoes.

In the current issue of the journal Nature, biologist Paul Garrity of the National Center for Behavioral Genomics at Brandeis University and his team, spearheaded by KyeongJin Kang and Vince Panzano in the Garrity lab, report how fruit flies distinguish the warmth of a summer day from the pungency of wasabi by using TRPA1, a protein whose human relative is critical for contolling pain and inflammation.

In earlier research Garrity’s team showed that flies, like humans, sense chemical irritants with TRPA1, indicating an ancient origin for harmful chemical sensing. In 2008, the team demonstrated that this protein serves a second function in flies: sensing warmth.

Gentle warmth and nasty chemicals trigger distinct responses. How can both responses rely on the same sensor? The team has now discovered that there is an easy answer. Insects actually make two forms of TRPA1, one specialized for each task.

What is the significance of this new research?

Such TRPA1 specialization has implications for devising bug sprays and traps to combat the transmission of diseases like malaria, dengue and West Nile virus. “This work on TRPA1 can explain how blood-sucking insects like mosquitoes discriminate noxious chemicals, which repel them, from the warmth of a human, which attracts them,” says Garrity. “By activating one kind of TRPA1 you might be able to deter mosquitoes from biting you, while activating the other kind of TRPA1 might lure mosquitoes to a trap.”

These findings also have implications for understanding the way that human damage-sensing neurons work, explains Garrity. Since human TRPA1 is a drug target aimed at treating diseases such as asthma, migraines, and chronic pain, Garrity says it’s important to understand how TRPA1 proteins operate.

“Fruit flies are easy to work with in the lab and this lets us test hypotheses about how TRPA1 operates quickly and relatively cheaply.” Says Garrity. “Fortunately, the function of TRPA1 seems evolutionarily ancient and conserved from flies to mosquitoes to humans, so one can gain insights of general biomedical relevance using flies.”

“Untreatable chronic pain and insect-borne diseases are two major human health problems,” says Garrity. “When you think about basic research translating into treatments to help people, work in these areas has tremendous potential for easing human misery.”

The study was funded by the National Science Foundation, National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke.

Susan Chaityn Lebovits | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>