Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Addressing pain and disease on the fly

07.12.2011
How fruit flies can teach us about curing chronic pain and halting mosquito-borne diseases

Studies of a protein that fruit flies use to sense heat and chemicals may someday provide solutions to human pain and the control of disease-spreading mosquitoes.

In the current issue of the journal Nature, biologist Paul Garrity of the National Center for Behavioral Genomics at Brandeis University and his team, spearheaded by KyeongJin Kang and Vince Panzano in the Garrity lab, report how fruit flies distinguish the warmth of a summer day from the pungency of wasabi by using TRPA1, a protein whose human relative is critical for contolling pain and inflammation.

In earlier research Garrity’s team showed that flies, like humans, sense chemical irritants with TRPA1, indicating an ancient origin for harmful chemical sensing. In 2008, the team demonstrated that this protein serves a second function in flies: sensing warmth.

Gentle warmth and nasty chemicals trigger distinct responses. How can both responses rely on the same sensor? The team has now discovered that there is an easy answer. Insects actually make two forms of TRPA1, one specialized for each task.

What is the significance of this new research?

Such TRPA1 specialization has implications for devising bug sprays and traps to combat the transmission of diseases like malaria, dengue and West Nile virus. “This work on TRPA1 can explain how blood-sucking insects like mosquitoes discriminate noxious chemicals, which repel them, from the warmth of a human, which attracts them,” says Garrity. “By activating one kind of TRPA1 you might be able to deter mosquitoes from biting you, while activating the other kind of TRPA1 might lure mosquitoes to a trap.”

These findings also have implications for understanding the way that human damage-sensing neurons work, explains Garrity. Since human TRPA1 is a drug target aimed at treating diseases such as asthma, migraines, and chronic pain, Garrity says it’s important to understand how TRPA1 proteins operate.

“Fruit flies are easy to work with in the lab and this lets us test hypotheses about how TRPA1 operates quickly and relatively cheaply.” Says Garrity. “Fortunately, the function of TRPA1 seems evolutionarily ancient and conserved from flies to mosquitoes to humans, so one can gain insights of general biomedical relevance using flies.”

“Untreatable chronic pain and insect-borne diseases are two major human health problems,” says Garrity. “When you think about basic research translating into treatments to help people, work in these areas has tremendous potential for easing human misery.”

The study was funded by the National Science Foundation, National Institute of Mental Health and the National Institute of Neurological Disorders and Stroke.

Susan Chaityn Lebovits | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>