Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Addition of dasatinib to standard chemo cocktail may enhance effect in certain ovarian cancers

The addition of a chemotherapeutic drug for leukemia to a standard regimen of two other chemotherapy drugs appears to enhance the response of certain ovarian cancers to treatment, according to a pre-clinical study led by researchers in the Duke Comprehensive Cancer Center.

"We know that a pathway called SRC is involved in cell proliferation in certain types of cancers, including some ovarian cancers," said Deanna Teoh, M.D., a fellow in gynecologic oncology at Duke and lead investigator on this study.

"By examining gene expression data, we determined that the combination of the leukemia drug dasatinib (Sprycel) made carboplatin and paclitaxel more effective in cell lines with higher levels of SRC expression and SRC pathway deregulation."

That synergistic effect, in which drugs used in combination strengthen each other's efficacy, was absent when low SRC expression and low SRC pathway deregulation were present, Teoh said.

"These findings indicate that we may be able to direct the use of a targeted therapy like dasatinib based on gene expression pathways in select ovarian cancers," she said.

The results of the study are being presented on a poster at the 100th annual American Association for Cancer Research meeting in Denver on April 19, 2009. The study was funded by the Prudent Fund and the National Institutes of Health.

"Our ultimate goal is to offer personalized therapy for women with ovarian cancer," said Angeles Secord, M.D., a gynecologic oncologist at Duke and senior investigator on this study. "Hopefully in the future we will apply targeted therapies to individual patients and their cancers in order to augment response to treatment while minimizing toxic side effects."

For this study, researchers examined four ovarian cancer cell lines, known as IGROV1, SKOV3, OVCAR3 and A2780. Three of the cell lines demonstrated high activation of SRC and one demonstrated lower SRC expression. All were treated in lab dishes with various combinations of the chemotherapeutic agents dasatinib, carboplatin and paclitaxel.

"We found that the addition of dasatinib to standard therapy in the three cell lines with significant SRC pathway deregulation – IGROV1, OVCAR3 and A2780 – enhanced the response of the cancer cells to therapy," Teoh said. "Conversely, in SKOV3, which has minimal SRC protein expression and pathway deregulation, we saw the least amount of anti-cancer activity when we added dasatinib."

It's possible that by blocking the SRC activity with the dasatinib, we are enhancing the effect of the other chemotherapeutic agents, Teoh said.

The results of this study support the further investigation of targeted biologic therapy using a SRC inhibitor in some ovarian cancers, she said. Currently a phase I trial of a combination of dasatinib, paclitaxel and carboplatin is available for women with advanced or recurrent ovarian, tubal and peritoneal cancers.

Dasatinib is a chemotherapeutic that is currently FDA-approved for use in leukemia. It is manufactured by Bristol-Myers Squibb and is sold under the brand name Sprycel. Bristol-Myers Squibb provided the dasatinib used in this study.

Other researchers involved in this study include Tina Ayeni, Jennifer Rubatt, Regina Whitaker, Holly Dressman and Andrew Berchuck.

Lauren Shaftel Williams | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>