By adding ultraviolet light to a model prebiotic reaction, researchers from the Georgia Institute of Technology and the University of Roma, “La Sapienza”, have discovered a route by which the missing guanine could have been formed. They also found that the RNA bases may have been easier to form than previously thought -- suggesting that starting life on Earth might not have been so difficult after all.
The findings are reported June 14, 2010 in the journal ChemBioChem. This collaborative work is supported by the National Science Foundation (NSF), the National Aeronautics and Space Administration, and the European Space Agency. The NSF funding is provided through the Center for Chemical Evolution at Georgia Tech.
Understanding how life emerged is one of the greatest scientific challenges. There is considerable evidence that the evolution of life passed through an early stage in which RNA played a more central role, before DNA and protein enzymes appeared.
Recent efforts to understand the prebiotic formation of the building blocks of RNA have focused on the chemical formamide (H2NCOH) as a potential starting material to create the RNA bases because it contains the four required elements -- carbon, hydrogen, oxygen and nitrogen -- and because of its stability, reactivity and low volatility compared to water. Previous reports have shown that these nucleic acid components -- with the exception of guanine -- can be synthesized by heating formamide to 160 degrees Celsius in the presence of mineral catalysts.
In their ChemBioChem paper, the researchers show for the first time that guanine can be produced by subjecting a solution of formamide to ultraviolet radiation during heating. The trace gaunine yield was greatly enhanced when minerals and photons were used together. In addition, production of adenine and a related molecule called hypoxanthine increased when ultraviolet light was added to the heating process -- a 15-fold increase was seen in adenine yield.
“These results potentially relax some of the requirements and reactions necessary to get life started, because formamide molecules would not have had to be in contact with a particular type of rock when heated on the prebiotic Earth, if the formamide was exposed to direct sunlight during heating,” said Nicholas Hud, a professor in the Georgia Tech School of Chemistry and Biochemistry.
The study demonstrated that guanine, adenine and hypoxanthine can be produced at lower temperatures than previously reported, even in the absence of minerals, as long as photons are added.
“For these experiments we built a very simple reaction chamber with an inexpensive 254-nanometer photon source to simulate conditions that could have been present on early Earth,” explained Thomas Orlando, also a professor in Georgia Tech’s School of Chemistry and Biochemistry. “We didn’t need extremely sophisticated experimental systems or expensive lasers; however, we did use sophisticated mass spectrometers to analyze the resulting complex chemical mixtures.”
The Hud and Orlando laboratories conducted experiments by heating formamide to 130 degrees Celsius -- 30 degrees cooler than previous experiments -- and shining ultraviolet light onto it.
“Our work has allowed us to consider a different type of ‘primordial soup’ than what has previously been considered possible starting conditions for life,” said Orlando. “Our model prebiotic reaction is attractive because most aspects of the process were likely to occur on the early Earth and it reduces chemical constraints.”
The authors suggest that aqueous pools containing small amounts of formamide may have existed on the early Earth. During hot and dry periods, water evaporation could have given rise to concentrated solutions of formamide and exposed mineral surfaces coated with formamide.
By conducting additional experiments at 100 degrees Celsius with solutions of formamide and water, the researchers confirmed that this “drying pool” model could give rise to solutions of formamide capable of producing the compounds found in their earlier experiments.
“While there is still a lot of chemistry required for us to better understand the formation of biological molecules needed for life, these one-pot reactions that occur due to the synergy of thermal and photochemical processes tell us that the chemical and environmental requirements to produce life are probably less restrictive than we once thought,” added Hud.
Sapienza University professor of molecular biology Ernesto Di Mauro, and Georgia Tech chemistry graduate students Hannah Barks and Ragan Buckley and research scientist Gregory Grieves also contributed to this work.
This project is supported by the National Science Foundation (NSF) (Award No. CHE-0739189) and the National Aeronautics and Space Administration (NASA) (Award Nos. NNG05GP20G and NNX08AO14G). The content is solely the responsibility of the principal investigator and does not necessarily represent the official view of the NSF or NASA.
Abby Vogel Robinson | Newswise Science News
Further information:
http://www.gatech.edu
Further reports about: > Aeronautics > Biochemistry > Building Technologies > CHEMISTRY > ChemBioChem > Earth's magnetic field > Merit Award > NASA > NSF > RNA > Science TV > Space Administration > chemical process > ultraviolet light
One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie
The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Magnetic nano-imaging on a table top
20.04.2018 | Physics and Astronomy
Start of work for the world's largest electric truck
20.04.2018 | Interdisciplinary Research
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy