Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acute stress alters control of gene activity

15.08.2012
Stressed genes
RUB researcher and colleagues examine DNA methylation
Acute stress alters control of gene activity

Acute stress alters the methylation of the DNA and thus the activity of certain genes. This is reported by researchers at the Ruhr-Universität Bochum together with colleagues from Basel, Trier and London for the first time in the journal Translational Psychiatry.


In stressful social situations, the methylation patterns (bright spheres) of the DNA change.
Illustration: Christoph Unternährer and Christian Horisberger

“The results provide evidence how stress could be related to a higher risk of mental or physical illness”, says Prof. Dr. Gunther Meinlschmidt from the Clinic of Psychosomatic Medicine and Psychotherapy at the LWL University Hospital of the RUB. The team looked at gene segments which are relevant to biological stress regulation.

Epigenetics - the “second code” - regulates gene activity

Our genetic material, the DNA, provides the construction manual for the proteins that our bodies need. Which proteins a cell produces depends on the cell type and the environment. So-termed epigenetic information determines which genes are read, acting quasi as a biological switch. An example of such a switch is provided by methyl (CH3) groups that attach to specific sections of the DNA and can remain there for a long time - even when the cell divides. Previous studies have shown that stressful experiences and psychological trauma in early life are associated with long-term altered DNA methylation. Whether the DNA methylation also changes after acute psychosocial stress, was, however, previously unknown.

Two genes tested

To clarify this issue, the research group examined two genes in particular: the gene for the oxytocin receptor, i.e. the docking site for the neurotransmitter oxytocin, which has become known as the “trust hormone” or “anti-stress hormone”; and the gene for the nerve growth factor Brain-Derived Neurotrophic Factor (BDNF), which is mainly responsible for the development and cross-linking of brain cells. The researchers tested 76 people who had to participate in a fictitious job interview and solve arithmetic problems under observation - a proven means for inducing acute stress in an experiment. For the analysis of the DNA methylation, they took blood samples from the subjects before the test as well as ten and ninety minutes afterwards.

DNA methylation changes under acute psychosocial stress

Stress had no effect on the methylation of the BDNF gene. In a section of the oxytocin receptor gene, however, methylation already increased within the first ten minutes of the stressful situation. This suggests that the cells formed less oxytocin receptors. Ninety minutes after the stress test, the methylation dropped below the original level before the test. This suggests that the receptor production was excessively stimulated.

Possible link between stress and disease

Stress increases the risk of physical or mental illness. The stress-related costs in Germany alone amount to many billions of Euros every year. In recent years, there have been indications that epigenetic processes are involved in the development of various chronic diseases such as cancer or depression. “Epigenetic changes may well be an important link between stress and chronic diseases” says Prof. Meinlschmidt, Head of the Research Department of Psychobiology, Psychosomatics and Psychotherapy at the LWL University Hospital. “We hope to identify more complex epigenetic stress patterns in future and thus to be able to determine the associated risk of disease. This could provide information on new approaches to treatment and prevention”. The work originated within the framework of an interdisciplinary research consortium with the University of Trier, the University of Basel and King’s College London. The German Research Foundation and the Swiss National Science Foundation supported the study.

Bibliographic record

E. Unternaehrer, P. Luers, J. Mill, E. Dempster, A.H. Meyer, S. Staehli, R. Lieb, D.H. Hellhammer, G. Meinlschmidt (2012): Dynamic changes in DNA methylation of stress associated genes (OXTR, BDNF) after acute psychosocial stress, Translational Psychiatry, doi: 10.1038/tp.2012.77

Further information

Prof. Dr. Gunther Meinlschmidt, Research Department of Psychobiology, Psychosomatics, and Psychotherapy; Clinic of Psychosomatic Medicine and Psychotherapy, LWL University Hospital of the Ruhr-Universität Bochum, Alexandrinenstrasse 1-3, 44791 Bochum, Germany, Tel. +49/234/5077-3173

gunther.meinlschmidt@rub.de

Click for more

Research Department of Neuroscience at the RUB
http://www.rd.ruhr-uni-bochum.de/neuro/index.html.en
Freely available article
http://www.nature.com/tp/journal/v2/n8/full/tp201277a.html
Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.rd.ruhr-uni-bochum.de/neuro/index.html.en
http://www.nature.com/tp/journal/v2/n8/full/tp201277a.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>