Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acute Myeloid Leukemia: Nanomedicine drug delivery system could improve chemotherapy

18.12.2012
Chemotherapy is still the backbone of today’s cancer treatment. This is exemplified by acute myeloid leukemia (AML), a disease which is responsive to intense chemotherapy based treatment regimens, which are at least curative in a fraction of patients. Anthracyclines belong to the key chemotherapeutic drugs applied worldwide in the treatment of AML.
Unfortunately, the administration dose of anthracyclines is limited by their cardiotoxicity and the development of drug-resistance of tumors. In addition, the efficiency of anthracyclines decreases during circulation in the blood stream due to its rapid metabolicdegradation.

To improve the pharmacological properties of anthracyclines, a novel nanomedicine drug delivery system has been developed by the groups of Prof. Dr. Tanja Weil (Institute of Organic Chemistry/Macromolecular Chemistry, Ulm University) and Prof. Dr. Christian Buske (Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm).

This biopolymer carries multiple copies of an anti-tumor drug molecule, it shows high stability in serum and efficient release in tumor cells by a dual mechanism. Significantly higher survival rates have been observed in an ex vivo animal model suggesting its potential for designing next generation anti-leukemia treatments. The results have been published in the Journal of Advanced Healthcare Materials.

Yuzhou Wu, Susann Ihme, Michaela Feuring-Buske, Seah Ling Kuan, Klaus Eisele, Markus Lamla, Yanran Wang, Christian Buske, and Tanja Weil. A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Advanced Healthcare Materials. http://doi.wiley.com/10.1002/adhm.201200296.”

Further information:
Prof. Dr. Tanja Weil, Tel.: 0049/731 50-22871 or 0049/731 50-22870
Prof. Dr. Christian Buske, Tel.: 0049/731 500-65800
PD Dr. Michaela Feuring-Buske, Tel.: 0049/731 500-65823

Willi Baur | idw
Further information:
http://www.uni-ulm.de/
http://doi.wiley.com/10.1002/adhm.201200296

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>