Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acute Myeloid Leukemia: Nanomedicine drug delivery system could improve chemotherapy

18.12.2012
Chemotherapy is still the backbone of today’s cancer treatment. This is exemplified by acute myeloid leukemia (AML), a disease which is responsive to intense chemotherapy based treatment regimens, which are at least curative in a fraction of patients. Anthracyclines belong to the key chemotherapeutic drugs applied worldwide in the treatment of AML.
Unfortunately, the administration dose of anthracyclines is limited by their cardiotoxicity and the development of drug-resistance of tumors. In addition, the efficiency of anthracyclines decreases during circulation in the blood stream due to its rapid metabolicdegradation.

To improve the pharmacological properties of anthracyclines, a novel nanomedicine drug delivery system has been developed by the groups of Prof. Dr. Tanja Weil (Institute of Organic Chemistry/Macromolecular Chemistry, Ulm University) and Prof. Dr. Christian Buske (Comprehensive Cancer Center Ulm, Institute of Experimental Cancer Research, University Hospital Ulm).

This biopolymer carries multiple copies of an anti-tumor drug molecule, it shows high stability in serum and efficient release in tumor cells by a dual mechanism. Significantly higher survival rates have been observed in an ex vivo animal model suggesting its potential for designing next generation anti-leukemia treatments. The results have been published in the Journal of Advanced Healthcare Materials.

Yuzhou Wu, Susann Ihme, Michaela Feuring-Buske, Seah Ling Kuan, Klaus Eisele, Markus Lamla, Yanran Wang, Christian Buske, and Tanja Weil. A core-shell albumin copolymer nanotransporter for high capacity loading and two-step release of doxorubicin with enhanced anti-leukemia activity. Advanced Healthcare Materials. http://doi.wiley.com/10.1002/adhm.201200296.”

Further information:
Prof. Dr. Tanja Weil, Tel.: 0049/731 50-22871 or 0049/731 50-22870
Prof. Dr. Christian Buske, Tel.: 0049/731 500-65800
PD Dr. Michaela Feuring-Buske, Tel.: 0049/731 500-65823

Willi Baur | idw
Further information:
http://www.uni-ulm.de/
http://doi.wiley.com/10.1002/adhm.201200296

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>