Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active genes discovered in the developing mammal brain

15.07.2009
A study by scientists at Penn State provides new information about the genes that are involved in a mammal's early brain development, including those that contribute to neurological disorders.

The study is the first to use high-throughput sequencing to uncover active genes in developing brains, and it is likely the best evidence thus far for the activity in the brain of such a large number of genes.

The research results one day could lead to the development of drugs or gene therapies that treat neurological disorders such as autism and mental retardation. The research, which was led by Distinguished Professor of Biology Hong Ma and Associate Professor of Biology Gong Chen, will be published online in the Early Edition of the Proceedings of the National Academy of Sciences sometime during the week of 13 July 2009.

In this study, the team used a high-throughput technique to sequence millions of messenger-RNA molecules, which carry genetic information from DNA molecules to protein molecules. The researchers obtained the RNA from the brains of mice, which are an important model system for studying human biology. They found that over 16,000 genes -- more than half of the mouse's entire set of known genes -- are involved in the brain's development and functions. "The brain represents one of the most, if not the most, complex organs in a mammal's body," said Ma. "So we weren't surprised to find that the number of genes that are active in the brain is so high."
The researchers focused on two critical times during the development of a mouse's brain: embryonic day 18 (E18) and post-natal day 7 (P7). "These two time points represent major milestones during brain formation," said Ma. "Brain development in an 18-day-old embryo involves a significant amount of brain cells, or neurons. In contrast, brain development in a seven-day-old infant involves the formation of numerous connections between these neurons. Our goal was to determine which genes are active during these two critical times."

The scientists examined genes that correspond to the RNA molecules from the cortex of a mouse. "The cortex is the surface portion of the large brain that is responsible for most cognitive and sensory abilities," said Ma. The team found that over 3,700 of the 16,000 genes that they had identified have different levels of activity between the E18 and P7 time points. "This differential activity tells us about the differences in the brain at these two stages," said Ma. "For example, the genes that are active at E18, but not at P7, probably are important during E18. We get some support for this notion when we see that certain genes that already are known to be involved in cell division are actively expressed during E18, while other genes that are known to play a role in building the connections between neurons are much more active at P7."

Some of the genes that the researchers found in mice are known to be matched to the human genes that are involved in neurological disorders, such as Alzheimer's disease, autism, and some forms of mental retardation. "Our results can help to pinpoint the specific time during brain development when the genes related to certain diseases are active," said Ma. "This knowledge may help other scientists to develop drugs or gene therapies that can treat the diseases. For example, if a particular gene defect causes poorly constructed connections between certain neurons, a drug might be developed that enhances those connections to compensate for the gene defect."

Ma said his future research plans include looking at some of the genes to see whether they are important for the brain to be formed properly. Chen plans to investigate, specifically, how genes function in development disorders of the brain. This research was supported by Penn State, the National Institutes of Health, and the National Science Foundation.

[ Sara LaJeunesse ]

CONTACTS
Hong Ma: (+1) 814-863-6414, hxm16@psu.edu
Gong Chen: gongchen@psu.edu
Barbara Kennedy (PIO): (+1) 814-863-4682, science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu
http://www.science.psu.edu/alert/MaChen7-2009.htm

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>