Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active genes discovered in the developing mammal brain

15.07.2009
A study by scientists at Penn State provides new information about the genes that are involved in a mammal's early brain development, including those that contribute to neurological disorders.

The study is the first to use high-throughput sequencing to uncover active genes in developing brains, and it is likely the best evidence thus far for the activity in the brain of such a large number of genes.

The research results one day could lead to the development of drugs or gene therapies that treat neurological disorders such as autism and mental retardation. The research, which was led by Distinguished Professor of Biology Hong Ma and Associate Professor of Biology Gong Chen, will be published online in the Early Edition of the Proceedings of the National Academy of Sciences sometime during the week of 13 July 2009.

In this study, the team used a high-throughput technique to sequence millions of messenger-RNA molecules, which carry genetic information from DNA molecules to protein molecules. The researchers obtained the RNA from the brains of mice, which are an important model system for studying human biology. They found that over 16,000 genes -- more than half of the mouse's entire set of known genes -- are involved in the brain's development and functions. "The brain represents one of the most, if not the most, complex organs in a mammal's body," said Ma. "So we weren't surprised to find that the number of genes that are active in the brain is so high."
The researchers focused on two critical times during the development of a mouse's brain: embryonic day 18 (E18) and post-natal day 7 (P7). "These two time points represent major milestones during brain formation," said Ma. "Brain development in an 18-day-old embryo involves a significant amount of brain cells, or neurons. In contrast, brain development in a seven-day-old infant involves the formation of numerous connections between these neurons. Our goal was to determine which genes are active during these two critical times."

The scientists examined genes that correspond to the RNA molecules from the cortex of a mouse. "The cortex is the surface portion of the large brain that is responsible for most cognitive and sensory abilities," said Ma. The team found that over 3,700 of the 16,000 genes that they had identified have different levels of activity between the E18 and P7 time points. "This differential activity tells us about the differences in the brain at these two stages," said Ma. "For example, the genes that are active at E18, but not at P7, probably are important during E18. We get some support for this notion when we see that certain genes that already are known to be involved in cell division are actively expressed during E18, while other genes that are known to play a role in building the connections between neurons are much more active at P7."

Some of the genes that the researchers found in mice are known to be matched to the human genes that are involved in neurological disorders, such as Alzheimer's disease, autism, and some forms of mental retardation. "Our results can help to pinpoint the specific time during brain development when the genes related to certain diseases are active," said Ma. "This knowledge may help other scientists to develop drugs or gene therapies that can treat the diseases. For example, if a particular gene defect causes poorly constructed connections between certain neurons, a drug might be developed that enhances those connections to compensate for the gene defect."

Ma said his future research plans include looking at some of the genes to see whether they are important for the brain to be formed properly. Chen plans to investigate, specifically, how genes function in development disorders of the brain. This research was supported by Penn State, the National Institutes of Health, and the National Science Foundation.

[ Sara LaJeunesse ]

CONTACTS
Hong Ma: (+1) 814-863-6414, hxm16@psu.edu
Gong Chen: gongchen@psu.edu
Barbara Kennedy (PIO): (+1) 814-863-4682, science@psu.edu

Barbara K. Kennedy | EurekAlert!
Further information:
http://www.psu.edu
http://www.science.psu.edu/alert/MaChen7-2009.htm

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>