Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Activation of the prefrontal cortex improves working memory

03.04.2009
This is an innovative view of the neurobiological mechanisms of cognitive control and opens up new lines of research

Psychologists and neurologists invest considerable effort in the study of working memory.

In terms of information retention, there is a difference between long-term memory, which is affected in diseases such as Alzheimer, and short-term or working memory, which allows us to make immediate decisions or structure a discourse. This more ephemeral memory is affected in diseases such as schizophrenia and depression, although a cause-effect relationship has not been established.

People with a higher working-memory capacity score higher on intelligence tests and, for this reason, it is thought that it may be intimately linked to people's cognitive ability. A study by IDIBAPS uses computational systems neurobiology models and functional magnetic resonance imaging scans to show that there are two parts of the cerebral cortex with highly differentiated roles implicated in this type of memory.

The results of the study were published in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS), in an article headed by Dr. Albert Compte of the Systems Neuroscience team of the Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), and with Fredrik Edin as the first author. This study was carried out in collaboration with two other laboratories of the Karolinska Institute, Stockholm, led by professors Torkel Klingberg and Jesper Tegnér.

Thanks to complex computer algorithms, it is possible to simulate a virtual network in which a large number of neurons interact. These models can simulate the functioning of the structures in our brains. According to the computer model published in PNAS, when the working memory needs to be increased, the prefrontal cortex reinforces the activation of the parietal cortex, in which the information is temporarily stored.

A brief stimulus that reaches the parietal cortex generates a reverberating activation that maintains a subpopulation active, while inhibitory interactions with neurons further away (lateral inhibition) prevents activation of the entire network. This lateral inhibition is also responsible for limiting the mnemonic capacity of the parietal network. The reinforcement of the parietal cortex by the prefrontal cortex prevents its inhibition, thereby temporarily improving working memory.

To verify this hypothesis, 25 healthy individuals carried out simple visual-memory tests while inside a functional magnetic resonance scanner. The differences in their ability to complete the exercises were linked to the intensity of activation of the prefrontal cortex and to their interconnection with the parietal cortex. The IDIBAPS and Karolinska researchers thus confirmed the hypothesis formulated based on the computer model. The more the prefrontal cortex is activated, the greater the capacity of the parietal cortex for retaining short-term visual information - an indicator of working-memory capacity.

This study explains many diverse results that have been obtained in recent years in psychology and neuroimaging studies on working memory. This is an innovative view of the neurobiological mechanisms of cognitive control and opens up new lines of research. Clinical studies will be needed to determine whether the stimulus of the prefrontal cortex, or its training by means of memory exercises and games, can have an effect on diseases in which working memory is damaged, such as depression or schizophrenia.

Alex Argemi | EurekAlert!
Further information:
http://www.clinic.ub.es
http://www.idibaps.ub.edu
http://www.hospitalclinic.org

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>