Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidifying oceans could hit California mussels, a key species

14.07.2011
Ocean acidification, a consequence of climate change, could weaken the shells of California mussels and diminish their body mass, with serious implications for coastal ecosystems, UC Davis researchers will report July 15 in the Journal of Experimental Biology.

California mussels (Mytilus californianus) live in beds along the western coast of the United States from Alaska to California. More than 300 other species share the beds or depend on the mussels in some way.

"Because these mussels play such an ecologically critical role, a decline in their numbers could impact a wide range of other organisms," said Brian Gaylord, associate professor of evolution and ecology at the UC Davis Bodega Marine Laboratory and first author of the paper.

Carbon dioxide, a greenhouse gas, is absorbed into the ocean, increasing its acidity. That acidity has increased by almost a third since the mid 18th century.

Mussels spend the first part of their lives swimming freely as larvae, before settling onto coastal rocks to grow into adults.

In the lab, Gaylord and his colleagues raised mussels from fertilization to the point where they were ready to settle, rearing them in both normal seawater and in water with two different conditions of elevated acidity. The acidity levels were based on projections by the Intergovernmental Panel on Climate Change, a Geneva-based scientific body established by the United Nations. One of the elevated acid levels assumed continued heavy use of fossil fuels; the other assumed a more optimistic scenario.

Compared to those raised in normal seawater, the young mussels living in the more acid waters had smaller, thinner, weaker shells, and as much as a third less body mass.

Weaker shells would make them more vulnerable to predators like crabs that crush their prey, as well as to carnivorous snails that drill through shells, Gaylord said.

Smaller body size would make them more likely to dry out at low tide and less able to withstand the energetically expensive process of metamorphosis from a free-living larva to a settled shellfish.

"Together these trends suggest that we're likely to see lower survivorship of young mussels as they return to shore," Gaylord said.

Although not an important fishery, the California mussel is a vital coastal species because so many other marine creatures depend on it for food and habitat.

Coauthors of the study are: Associate Professor Eric Sanford, researcher Elizabeth Lenz, research technician Kirk Sato and graduate student Annaliese Hettinger, all of the UC Davis Department of Evolution and Ecology and Bodega Marine Lab; Assistant Professor Tessa Hill and technician Lisa Jacobs, of the UC Davis Department of Geology and Bodega Marine Lab; and Ann Russell, associate researcher at the UC Davis Department of Geology.

The work was funded by the National Science Foundation, the UC Multicampus Research Programs and Initiatives office, and the UC Davis Academic Senate Committee on Research.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>