Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accurate timing of migration prolongs life expectancy in pike

01.10.2015

Animal migration is a spectacular phenomenon that has fascinated humans for long. It is widely assumed that appropriate timing of migratory events is crucial for survival, but the causes and consequences of individual variation in timing are poorly understood. New research based on migrating pike in the Baltic Sea and published in the British Ecological Society’s Journal of Animal Ecology reveals how behaviours such as punctuality, flexibility and fine-tuning influence life expectancy in fish.

Pike is a widely distributed, long-lived and large keystone predatory fish species that breeds annually after becoming mature. In the Baltic Sea, some pike display homing behaviour and repeatedly migrate to spawn in the same stream where they were born. Migrating pike in the Baltic Sea thus offers interesting and rare opportunities to gain further understanding of the causes and consequences of variation in migratory timing among and within individuals.


Two northern pike (Esox lucius) returning to spawn in the stream where they were born. They will soon emigrate back to the Baltic Sea, where individuals originating from different streams coexist.

Photo © Olof Engstedt

Tibblin and collaborators from Linnaeus University (Kalmar, Sweden) studied arrival timing across six years of more than 2000 marked pike that migrated to a small spawning stream that flowed into the southwest of the Baltic Sea.

Lead-author Dr Petter Tibblin elaborates: “results show that individual migratory timing is consistent across years and that arriving too early or too late increases mortality. Individuals also continuously fine-tune their timing with increased experience, a behaviour that is similar to the trial-and-error method used by many mammals but previously not shown for fish”.

Results also shed some new light on the long-standing and intriguing issue of whether flexibility is adaptive such that it increases fitness, a topic that recently has received increased scientific attention although it has rarely been investigated empirically.

Study co-author professor Anders Forsman says: “we demonstrate that there is variation among individuals in the degree of flexibility (adjustments in migratory timing across years) and further establish that greater flexibility at early reproductive events improves life expectancy”

This research emphasizes the complex nature of animal behaviour, and advances our understanding of migratory behaviour. Co-author professor Per Larsson concludes: “that among individual variation and within-individual flexibility in migratory timing are associated with fitness suggest that these behaviours may also influence the viability of populations in the face of a rapidly changing world, and this should be considered in management programs”.

Petter Tibblin, Anders Forsman, and Per Larsson are members of the Linnaeus University Centre for Ecology and Evolution in Microbial model Systems, EEMiS. http://lnu.se/lnuc/eemis

Anders Forsmans personal webpage: http://lnu.se/personal/anders.forsman

Read the article:
Tibblin, P., Forsman, A., Borger, T. and Larsson, P. 2015. Causes and consequences of repeatability, flexibility and individual fine-tuning of migratory timing in pike. Journal of Animal Ecology, DOI: 10.1111/1365-2656.12439

Contact information:
Petter Tibblin, PhD, e-mail: Petter.Tibblin@LNU.se; phone: +46-(0)480-44 67 45; cellular phone: +46-(0)705-52 99 37

Anders Forsman, professor, e-mail: Anders.Forsman@LNU.se; phone: +46-(0)480-44 61 73; cellular phone: +46-(0)706-27 27 38

Per Larsson, professor, e-mail: Per.Larsson@lnu.se; phone: +46-(0)480-44 73 11
Pressofficer, Jonas Tenje+46 (0) 70 308 40 75

Pressofficer: Christina Dahlgren, +46-705 72 26 56, christina.dahlgren@lnu.se

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1111/1365-2656.12439/abstract Link to the article

Christina Dahlgren | idw - Informationsdienst Wissenschaft

Further reports about: Ecology cellular phone timing of migration

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>