Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accidental discovery produces durable new blue pigment for multiple applications

18.11.2009
An accidental discovery in a laboratory at Oregon State University has apparently solved a quest that over thousands of years has absorbed the energies of ancient Egyptians, the Han dynasty in China, Mayan cultures and more – the creation of a near-perfect blue pigment.

Through much of recorded human history, people around the world have sought inorganic compounds that could be used to paint things blue, often with limited success. Most had environmental or durability issues. Cobalt blue, developed in France in the early 1800s, can be carcinogenic. Prussian blue can release cyanide. Other blue pigments are not stable when exposed to heat or acidic conditions.

But chemists at OSU have discovered new compounds based on manganese that should address all of those concerns. They are safer to produce, much more durable, and should lead to more environmentally benign blue pigments than any being used now or in the past. They can survive at extraordinarily high temperatures and don’t fade after a week in an acid bath.

The findings were just published in the Journal of the American Chemical Society, and a patent has been applied for on the composition of the compound and the process used to create it. The research was funded by the National Science Foundation.

“Basically, this was an accidental discovery,” said Mas Subramanian, the Milton Harris Professor of Materials Science in the OSU Department of Chemistry. “We were exploring manganese oxides for some interesting electronic properties they have, something that can be both ferroelectric and ferromagnetic at the same time. Our work had nothing to do with looking for a pigment.

“Then one day a graduate student who is working in the project was taking samples out of a very hot furnace while I was walking by, and it was blue, a very beautiful blue,” he said. “I realized immediately that something amazing had happened.”

What had happened, the researchers said, was that at about 1,200 degrees centigrade – almost 2,000 degrees Fahrenheit – this otherwise innocuous manganese oxide turned into a vivid blue compound that could be used to make a pigment able to resist heat and acid, be environmentally benign and cheap to produce from a readily available mineral.

The newest – and possibly the best – blue pigment in world history was born, due to manganese ions being structured in an unusual “trigonal bipyramidal coordination” in the presence of extreme heat.

“Ever since the early Egyptians developed some of the first blue pigments, the pigment industry has been struggling to address problems with safety, toxicity and durability,” Subramanian said.

The pigment may eventually find uses in everything from inkjet printers to automobiles, fine art or house paint, researchers say.

The scientists said in their journal article that the new compound yields “a surprisingly intense and bright blue color,” and they have outlined its structure and characteristics in detail. Collaborating on the work were researchers in the Materials Department at the University of California/Santa Barbara.

“A lot of the most interesting discoveries are not really planned, we’ve seen that throughout history,” Subramanian said. “There is luck involved, but I also teach my students that you have to stay alert to recognize something when it happens, even if it isn’t what you were looking for.”

“Luck favors the alert mind.”

About the OSU College of Science: As one of the largest academic units at OSU, the College of Science has 14 departments and programs, 13 pre-professional programs, and provides the basic science courses essential to the education of every OSU student. Its faculty are international leaders in scientific research.

Mas Subramanian | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>