Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Absent pheromones turn flies into lusty Lotharios

16.10.2009
When Professor Joel Levine's team genetically tweaked fruit flies so that they didn't produce certain pheromones, they triggered a sexual tsunami in their University of Toronto Mississauga laboratory.

In fact, they produced bugs so irresistible that normal male fruit flies attempted to mate with pheromone-free males and even females from a different species-generally a no-no in the fruit fly dating scene.

The study, published in the Oct. 15 issue of Nature, points to a link between sex, species recognition and a specific chemical mechanism, and is part of Levine's larger research into the genetic basis of social behaviour.

"This is important not only from the point of view of understanding social dynamics, but it's also fundamental biology, because these pheromones provide recognition cues that facilitate reproductive behaviour," says Levine, an assistant professor of biology. "Lacking these chemical signals (pheromones) eliminated barriers to mating. It turned out that males of other species were attracted to females who didn't have these signals, so that seemed to eliminate the species barrier."

In this study, they focused on recognition-how individual Drosophila melanogaster (fruit flies) know what their species is and what their sex is. While previous studies had suggested that pheromones played an important role, Levine's team decided to genetically eliminate a certain class of these chemicals, called cuticular hydrocarbon pheromones, to determine their particular effect.

The researchers found that female flies bred without the hydrocarbons were melanogaster Marilyn Monroes to normal males. But the effect didn't stop there-males lacking the hydrocarbons were also sexually irresistible. In fact, females lacking the hydrocarbons were so sexy that males of other Drosophila species courted them.

When the researchers treated females bred without the hydrocarbons with a female aphrodisiac, it restored the barrier preventing sex between species, suggesting that a single compound can provide species identity. "That means the same chemical signals and genes are underlying not only social behaviour in groups, like courtship and mating, but also behaviour between species."

Levine stresses that while pheromones are part of the human mating dance, the cues for attraction are far more complex in our species.

"Although I am no expert on human pheromones, there is evidence that men and women may discriminate odours from the same sex or other sexes differently, and there's even some evidence that how an individual discriminates those odours may reflect their gender preference," he says. "We may rely more on the visual system, and we may have a more complex way of assessing other individuals and classifying them and determining how we're going to relate to them than a fly does.

"But what we're looking at is a spectrum across biology of a tendency to understand how others relate to ourselves. It's clearly an issue that humans are caught up in-it's in our art, like Madame Butterfly and it's in our newspapers, in terms of sports issues like the recent controversy about the sexual identify of the South African runner Caster Semenya."

The study was funded by grants from the Swiss National Science Foundation, the Canadian Institutes of Health Research and Canada Research Chair grants awarded to Levine.

*Images available upon request.

CONTACT:
Joel Levine
Department of Biology
University of Toronto Mississauga
joel.levine@utoronto.ca
Nicolle Wahl
Communications and Marketing
University of Toronto Mississauga
905-569-4656
nicolle.wahl@utoronto.ca

Nicolle Wahl | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>