Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Abnormalities in HER2 gene found in wide variety of advanced cancers

The HER2 growth-factor gene is known to be over-active in breast and gastro-esophageal cancers. But now, irregularities in the genes 's expression — among them mutations, amplifications, substitutions, and translocations — have been found in 14 different advanced solid tumors.

The results of the study of more than 2,000 tumors, being presented at the annual meeting of the American Society of Clinical Oncology (ASCO), both surprised researchers and provided hope that some of these tumors might benefit from the three anti-HER2 therapies now in clinical use.

"No one ever thought that there would be such a variety of genomic alterations in HER2 in this many solid tumors," says Massimo Cristofanilli, MD, FACP, Professor of Medical Oncology and Director of the Jefferson Breast Center at the Kimmel Cancer Center and Thomas Jefferson University Hospital.

"But this may be good news, both clinically and scientifically," he says. "It tells us that these tumors might benefit from treatment that we already have on hand, and, from a research perspective, it builds on the idea that it is the genomic profile of a tumor that is relevant in providing biological information for planning of personalized treatments — not where the cancer is located or where it develops.'

Dr. Cristofanilli is presenting the results of the study in an oral presentation at the ASCO meeting. He is one of a group of co-authors from many institutions who donated tumor samples to Foundation Medicine, a cancer diagnostics company in Cambridge, Massachusetts. Foundation Medicine led and paid for the study.

Dr. Cristofanilli contributed about 50 metastatic breast tumor samples for the analysis, and found out that one of his patients with advanced triple negative breast cancer had a HER2 mutation. "My patient was treated with Herceptin as well as chemotherapy, and derived clinical benefit," he says. "No one looks for HER2 mutations in this form of breast cancer. To me, this makes the case for the value of genome-driven therapy."
In the study, Foundation Medicine conducted a genetic screen of more than 182 genes and 14 genetic rearrangements known to be linked to cancer in 2,223 tumor specimens. Twenty different advanced solid cancers were represented.

Researchers found HER2 alterations in 14 types of solid tumors, including 29 percent of esophageal, 20 percent of uterine, 14 percent of breast, 12 percent of stomach carcinomas, and 6 percent of all lung cancer samples.

They also found HER2 irregularities varied widely — 4.9 percent of specimens had 116 different HER2 alterations. That included 58 percent with amplifications, 25 percent with substitutions, 14 percent with indels (insertions/deletions of DNA), 2 percent with splice site variants, 2 percent with translocations, 5 percent with multiple alterations, and 2 tumors had both HER2 substitution and amplification.
Anti-HER2 therapies such as Herceptin can also treat HER2 mutations, and may also help block HER2 that is altered in the ways seen in the study, Dr. Cristofanilli says.

"This study highlights the need to study a broad range of genes at a high level of sensitivity and specificity when searching for novel targets of therapy," he says. "Widespread use of this approach could provide more treatment options and enable more rapid accrual to ongoing and planned trials of agents targeting pathways under study."

Dr. Cristofanilli declares no conflicts of interest related to this study.
Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Danielle Servetnick | EurekAlert!
Further information:

Further reports about: ASCO Biomedical Science HER2 Herceptin JMC Medicine Oncology TJU abnormalities breast cancer health services

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>