Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormalities in HER2 gene found in wide variety of advanced cancers

03.06.2013
The HER2 growth-factor gene is known to be over-active in breast and gastro-esophageal cancers. But now, irregularities in the genes 's expression — among them mutations, amplifications, substitutions, and translocations — have been found in 14 different advanced solid tumors.

The results of the study of more than 2,000 tumors, being presented at the annual meeting of the American Society of Clinical Oncology (ASCO), both surprised researchers and provided hope that some of these tumors might benefit from the three anti-HER2 therapies now in clinical use.

"No one ever thought that there would be such a variety of genomic alterations in HER2 in this many solid tumors," says Massimo Cristofanilli, MD, FACP, Professor of Medical Oncology and Director of the Jefferson Breast Center at the Kimmel Cancer Center and Thomas Jefferson University Hospital.

"But this may be good news, both clinically and scientifically," he says. "It tells us that these tumors might benefit from treatment that we already have on hand, and, from a research perspective, it builds on the idea that it is the genomic profile of a tumor that is relevant in providing biological information for planning of personalized treatments — not where the cancer is located or where it develops.'

Dr. Cristofanilli is presenting the results of the study in an oral presentation at the ASCO meeting. He is one of a group of co-authors from many institutions who donated tumor samples to Foundation Medicine, a cancer diagnostics company in Cambridge, Massachusetts. Foundation Medicine led and paid for the study.

Dr. Cristofanilli contributed about 50 metastatic breast tumor samples for the analysis, and found out that one of his patients with advanced triple negative breast cancer had a HER2 mutation. "My patient was treated with Herceptin as well as chemotherapy, and derived clinical benefit," he says. "No one looks for HER2 mutations in this form of breast cancer. To me, this makes the case for the value of genome-driven therapy."
In the study, Foundation Medicine conducted a genetic screen of more than 182 genes and 14 genetic rearrangements known to be linked to cancer in 2,223 tumor specimens. Twenty different advanced solid cancers were represented.

Researchers found HER2 alterations in 14 types of solid tumors, including 29 percent of esophageal, 20 percent of uterine, 14 percent of breast, 12 percent of stomach carcinomas, and 6 percent of all lung cancer samples.

They also found HER2 irregularities varied widely — 4.9 percent of specimens had 116 different HER2 alterations. That included 58 percent with amplifications, 25 percent with substitutions, 14 percent with indels (insertions/deletions of DNA), 2 percent with splice site variants, 2 percent with translocations, 5 percent with multiple alterations, and 2 tumors had both HER2 substitution and amplification.
Anti-HER2 therapies such as Herceptin can also treat HER2 mutations, and may also help block HER2 that is altered in the ways seen in the study, Dr. Cristofanilli says.

"This study highlights the need to study a broad range of genes at a high level of sensitivity and specificity when searching for novel targets of therapy," he says. "Widespread use of this approach could provide more treatment options and enable more rapid accrual to ongoing and planned trials of agents targeting pathways under study."

Dr. Cristofanilli declares no conflicts of interest related to this study.
Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Danielle Servetnick | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: ASCO Biomedical Science HER2 Herceptin JMC Medicine Oncology TJU abnormalities breast cancer health services

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>