Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormalities in HER2 gene found in wide variety of advanced cancers

03.06.2013
The HER2 growth-factor gene is known to be over-active in breast and gastro-esophageal cancers. But now, irregularities in the genes 's expression — among them mutations, amplifications, substitutions, and translocations — have been found in 14 different advanced solid tumors.

The results of the study of more than 2,000 tumors, being presented at the annual meeting of the American Society of Clinical Oncology (ASCO), both surprised researchers and provided hope that some of these tumors might benefit from the three anti-HER2 therapies now in clinical use.

"No one ever thought that there would be such a variety of genomic alterations in HER2 in this many solid tumors," says Massimo Cristofanilli, MD, FACP, Professor of Medical Oncology and Director of the Jefferson Breast Center at the Kimmel Cancer Center and Thomas Jefferson University Hospital.

"But this may be good news, both clinically and scientifically," he says. "It tells us that these tumors might benefit from treatment that we already have on hand, and, from a research perspective, it builds on the idea that it is the genomic profile of a tumor that is relevant in providing biological information for planning of personalized treatments — not where the cancer is located or where it develops.'

Dr. Cristofanilli is presenting the results of the study in an oral presentation at the ASCO meeting. He is one of a group of co-authors from many institutions who donated tumor samples to Foundation Medicine, a cancer diagnostics company in Cambridge, Massachusetts. Foundation Medicine led and paid for the study.

Dr. Cristofanilli contributed about 50 metastatic breast tumor samples for the analysis, and found out that one of his patients with advanced triple negative breast cancer had a HER2 mutation. "My patient was treated with Herceptin as well as chemotherapy, and derived clinical benefit," he says. "No one looks for HER2 mutations in this form of breast cancer. To me, this makes the case for the value of genome-driven therapy."
In the study, Foundation Medicine conducted a genetic screen of more than 182 genes and 14 genetic rearrangements known to be linked to cancer in 2,223 tumor specimens. Twenty different advanced solid cancers were represented.

Researchers found HER2 alterations in 14 types of solid tumors, including 29 percent of esophageal, 20 percent of uterine, 14 percent of breast, 12 percent of stomach carcinomas, and 6 percent of all lung cancer samples.

They also found HER2 irregularities varied widely — 4.9 percent of specimens had 116 different HER2 alterations. That included 58 percent with amplifications, 25 percent with substitutions, 14 percent with indels (insertions/deletions of DNA), 2 percent with splice site variants, 2 percent with translocations, 5 percent with multiple alterations, and 2 tumors had both HER2 substitution and amplification.
Anti-HER2 therapies such as Herceptin can also treat HER2 mutations, and may also help block HER2 that is altered in the ways seen in the study, Dr. Cristofanilli says.

"This study highlights the need to study a broad range of genes at a high level of sensitivity and specificity when searching for novel targets of therapy," he says. "Widespread use of this approach could provide more treatment options and enable more rapid accrual to ongoing and planned trials of agents targeting pathways under study."

Dr. Cristofanilli declares no conflicts of interest related to this study.
Thomas Jefferson University (TJU), the largest freestanding academic medical center in Philadelphia, is nationally renowned for medical and health sciences education and innovative research. Founded in 1824, TJU includes Jefferson Medical College (JMC), one of the largest private medical schools in the country and ranked among the nation's best medical schools by U.S. News & World Report, and the Jefferson Schools of Nursing, Pharmacy, Health Professions, Population Health and the Graduate School of Biomedical Sciences. Jefferson University Physicians is TJU's multi-specialty physician practice consisting of the full-time faculty of JMC. Thomas Jefferson University partners with its clinical affiliate, Thomas Jefferson University Hospitals.

Danielle Servetnick | EurekAlert!
Further information:
http://www.jefferson.edu

Further reports about: ASCO Biomedical Science HER2 Herceptin JMC Medicine Oncology TJU abnormalities breast cancer health services

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>