Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal brain circuits may prevent movement disorder

05.08.2009
Discovery could explain why people with genetic mutations for dystonia do not always show symptoms

Specific changes in brain pathways may counteract genetic mutations for the movement disorder dystonia, according to new research in the August 5 issue of The Journal of Neuroscience.

Few people who inherit dystonia genes display symptoms — namely sustained muscle contractions and involuntary gestures — and the study provides a possible explanation. This result could lead to new treatments for the estimated 500,000 North Americans diagnosed with dystonia.

In this study, researchers looked for the first time at how brain connections might explain the disorder. "Our findings begin to show why someone can live with a genetic mutation without ever developing the disease," said David Eidelberg, MD, at The Feinstein Institute for Medical Research, the study's senior author.

Scientists at The Feinstein Institute used an MRI-based approach called diffusion tensor imaging, a technique that maps the connections between structures in the human brain. Twenty patients with mutated genes associated with dystonia were assessed (12 with symptoms, eight without), along with eight healthy patients without these mutations.

The authors identified two different brain pathways that determine the severity of symptoms. One pathway connecting the cerebellum with the thalamus is abnormal in all people carrying the mutant gene, and predisposes carriers to dystonia. In the patients with mutated genes but no symptoms, a second pathway between the thalamus and the cortex is also abnormal. Surprisingly, this second pathway is normal in patients with symptoms. The researchers suggest that in people who have the mutations but no symptoms, the second abnormality may offset the effect of the first, preventing the disease's outward signs.

David Standaert, MD, PhD, at University of Alabama at Birmingham, is an expert in Parkinson's disease and other movement disorders and was not affiliated with the study. Standaert says that although dystonia is a relatively rare disorder, the study has implications for other neurological illnesses, such as Parkinson's, Alzheimer's, and Huntington's diseases; ataxia and muscular dystrophies; and even forms of migraine.

"The core idea here is that many diseases can be triggered by a single gene, but the expression of this gene can differ greatly, even in individuals from the same family," Standaert said. "Dystonia provides dramatic examples of this. Two siblings may have the same abnormal gene, but one will be severely disabled by twisting and cramping of the muscles, while the other will be essentially normal."

The pathway abnormalities identified in the study could likely have formed in an early stage of brain development, Standaert suggested. Symptoms in adult life, therefore, may be determined by subtle shifts in early brain growth. Detailed study of these newly implicated pathways in both humans and animals could lead to ways to prevent symptoms, if balance to the affected pathways is restored.

The research was supported by the National Institutes of Health, the Bachmann-Strauss Dystonia and Parkinson Foundation, and the General Clinical Research Center of The Feinstein Institute for Medical Research.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 38,000 basic scientists and clinicians who study the brain and nervous system. Eidelberg can be reached at david1@nshs.edu .

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>