Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Abnormal brain circuits may prevent movement disorder

05.08.2009
Discovery could explain why people with genetic mutations for dystonia do not always show symptoms

Specific changes in brain pathways may counteract genetic mutations for the movement disorder dystonia, according to new research in the August 5 issue of The Journal of Neuroscience.

Few people who inherit dystonia genes display symptoms — namely sustained muscle contractions and involuntary gestures — and the study provides a possible explanation. This result could lead to new treatments for the estimated 500,000 North Americans diagnosed with dystonia.

In this study, researchers looked for the first time at how brain connections might explain the disorder. "Our findings begin to show why someone can live with a genetic mutation without ever developing the disease," said David Eidelberg, MD, at The Feinstein Institute for Medical Research, the study's senior author.

Scientists at The Feinstein Institute used an MRI-based approach called diffusion tensor imaging, a technique that maps the connections between structures in the human brain. Twenty patients with mutated genes associated with dystonia were assessed (12 with symptoms, eight without), along with eight healthy patients without these mutations.

The authors identified two different brain pathways that determine the severity of symptoms. One pathway connecting the cerebellum with the thalamus is abnormal in all people carrying the mutant gene, and predisposes carriers to dystonia. In the patients with mutated genes but no symptoms, a second pathway between the thalamus and the cortex is also abnormal. Surprisingly, this second pathway is normal in patients with symptoms. The researchers suggest that in people who have the mutations but no symptoms, the second abnormality may offset the effect of the first, preventing the disease's outward signs.

David Standaert, MD, PhD, at University of Alabama at Birmingham, is an expert in Parkinson's disease and other movement disorders and was not affiliated with the study. Standaert says that although dystonia is a relatively rare disorder, the study has implications for other neurological illnesses, such as Parkinson's, Alzheimer's, and Huntington's diseases; ataxia and muscular dystrophies; and even forms of migraine.

"The core idea here is that many diseases can be triggered by a single gene, but the expression of this gene can differ greatly, even in individuals from the same family," Standaert said. "Dystonia provides dramatic examples of this. Two siblings may have the same abnormal gene, but one will be severely disabled by twisting and cramping of the muscles, while the other will be essentially normal."

The pathway abnormalities identified in the study could likely have formed in an early stage of brain development, Standaert suggested. Symptoms in adult life, therefore, may be determined by subtle shifts in early brain growth. Detailed study of these newly implicated pathways in both humans and animals could lead to ways to prevent symptoms, if balance to the affected pathways is restored.

The research was supported by the National Institutes of Health, the Bachmann-Strauss Dystonia and Parkinson Foundation, and the General Clinical Research Center of The Feinstein Institute for Medical Research.

The Journal of Neuroscience is published by the Society for Neuroscience, an organization of more than 38,000 basic scientists and clinicians who study the brain and nervous system. Eidelberg can be reached at david1@nshs.edu .

Kat Snodgrass | EurekAlert!
Further information:
http://www.sfn.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>