Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aberrant mTOR Signaling Impairs Whole Body Physiology

11.08.2014

The protein mTOR is a central controller of growth and metabolism.

Deregulation of mTOR signaling increases the risk of developing metabolic diseases such as diabetes, obesity and cancer. In the current issue of the journal Proceedings of the National Academy of Sciences, researchers from the Biozentrum of the University of Basel describe how aberrant mTOR signaling in the liver not only affects hepatic metabolism but also whole body physiology.


Activated mTORC1 signaling (top) correlates with increased FGF21 expression (below) in human liver tumor.

University of Basel, Biozentrum

The protein mTOR regulates cell growth and metabolism and thus plays a key role in the development of human disorders. In the cell, this regulatory protein is found in two structurally and functionally distinct protein complexes called mTORC1 and mTORC2. In a recent study, the research group of Prof. Michael Hall from the Biozentrum of the University of Basel has shed light on the role of hepatic mTORC1 in whole body physiology and the relevance for human liver cancers.

Hepatic mTORC1 controls whole body physiology

In mammals, the liver is a key organ that controls whole body physiology in response to nutrients. Hall’s team investigated the role of the nutrient sensor mTORC1 in this process. The researchers were able to show that activation of mTORC1 in the liver of mice reduces not only hepatic lipid metabolism but also locomotor activity and body temperature.

Upon investigating the underlying molecular mechanism, they observed that mTORC1 hyperactivation enhances the level of the stress hormone FGF21 by depletion of the amino acid glutamine. Treatment of animals with glutamine reduced the level of FGF21 and thus prevented the physiological impairments.

Cancer treatment with mTORC1 inhibitors

Human cancers often exhibit aberrant mTORC1 signaling and glutamine addiction. “We were excited to see that in human liver tumors mTORC1 signaling correlates with FGF21 expression”, comments cell biologist Dr. Marion Cornu and first author of the study.

Moreover, mTORC1 inhibitors such as rapamycin are currently used as immunosuppressive agents and anti-cancer drugs. Thus, the novel findings of Hall’s team provide evidence that treatment of glutamine addicted human cancers with rapamycin might have beneficial effects by blocking tumor growth and by preventing deregulation of whole body physiology.

Original citation
Marion Cornu, Wolfgang Oppliger, Verena Albert, Aaron M. Robitaille, Francesca Trapani, Luca Quagliata, Tobias Fuhrer, Uwe Sauer, Luigi Terracciano, Michael N. Hall
Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21
PNAS; published online 31 July 2014 | doi: 10.1073/pnas.1412047111

Further information
Prof. Michael N. Hall, University of Basel, Biozentrum, phone: +41 61 267 21 50, email: m.hall@unibas.ch

Weitere Informationen:

http://unibas.ch/index.cfm?uuid=AF35AC9D0686646B179E1217CF5F88BF&type=search...

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Cancer FGF21 Physiology activity developing diseases glutamine hepatic mTOR mTORC1 metabolism temperature

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>