Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aberrant mTOR Signaling Impairs Whole Body Physiology

11.08.2014

The protein mTOR is a central controller of growth and metabolism.


Activated mTORC1 signaling (top) correlates with increased FGF21 expression (below) in human liver tumor.

University of Basel, Biozentrum

Deregulation of mTOR signaling increases the risk of developing metabolic diseases such as diabetes, obesity and cancer. In the current issue of the journal Proceedings of the National Academy of Sciences, researchers from the Biozentrum of the University of Basel describe how aberrant mTOR signaling in the liver not only affects hepatic metabolism but also whole body physiology.

The protein mTOR regulates cell growth and metabolism and thus plays a key role in the development of human disorders. In the cell, this regulatory protein is found in two structurally and functionally distinct protein complexes called mTORC1 and mTORC2. In a recent study, the research group of Prof. Michael Hall from the Biozentrum of the University of Basel has shed light on the role of hepatic mTORC1 in whole body physiology and the relevance for human liver cancers.

Hepatic mTORC1 controls whole body physiology

In mammals, the liver is a key organ that controls whole body physiology in response to nutrients. Hall’s team investigated the role of the nutrient sensor mTORC1 in this process. The researchers were able to show that activation of mTORC1 in the liver of mice reduces not only hepatic lipid metabolism but also locomotor activity and body temperature.

Upon investigating the underlying molecular mechanism, they observed that mTORC1 hyperactivation enhances the level of the stress hormone FGF21 by depletion of the amino acid glutamine. Treatment of animals with glutamine reduced the level of FGF21 and thus prevented the physiological impairments.

Cancer treatment with mTORC1 inhibitors

Human cancers often exhibit aberrant mTORC1 signaling and glutamine addiction. “We were excited to see that in human liver tumors mTORC1 signaling correlates with FGF21 expression”, comments cell biologist Dr. Marion Cornu and first author of the study.

Moreover, mTORC1 inhibitors such as rapamycin are currently used as immunosuppressive agents and anti-cancer drugs. Thus, the novel findings of Hall’s team provide evidence that treatment of glutamine addicted human cancers with rapamycin might have beneficial effects by blocking tumor growth and by preventing deregulation of whole body physiology.

Original citation
Marion Cornu, Wolfgang Oppliger, Verena Albert, Aaron M. Robitaille, Francesca Trapani, Luca Quagliata, Tobias Fuhrer, Uwe Sauer, Luigi Terracciano, Michael N. Hall
Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21
PNAS; published online 31 July 2014 | doi: 10.1073/pnas.1412047111

Further information
Prof. Michael N. Hall, University of Basel, Biozentrum, phone: +41 61 267 21 50, email: m.hall@unibas.ch

Weitere Informationen:

http://unibas.ch/index.cfm?uuid=AF35AC9D0686646B179E1217CF5F88BF&type=search...

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Cancer FGF21 Physiology activity developing diseases glutamine hepatic mTOR mTORC1 metabolism temperature

More articles from Life Sciences:

nachricht The science behind swimming
15.09.2014 | Harvard University

nachricht Zebrafish model of a learning and memory disorder shows better treatment
15.09.2014 | University of Pennsylvania School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

"Start-ups and spin-offs funding – Public and private policies", 14th October 2014

12.09.2014 | Event News

BALTIC 2014: Baltic Sea Geologists meet in Warnemünde

03.09.2014 | Event News

IT security in the digital society

27.08.2014 | Event News

 
Latest News

Martian meteorite yields more evidence of the possibility of life on Mars

15.09.2014 | Earth Sciences

The science behind swimming

15.09.2014 | Life Sciences

Scientists come closer to the industrial synthesis of a material harder than diamond

15.09.2014 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>