Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aberrant mTOR Signaling Impairs Whole Body Physiology


The protein mTOR is a central controller of growth and metabolism.

Deregulation of mTOR signaling increases the risk of developing metabolic diseases such as diabetes, obesity and cancer. In the current issue of the journal Proceedings of the National Academy of Sciences, researchers from the Biozentrum of the University of Basel describe how aberrant mTOR signaling in the liver not only affects hepatic metabolism but also whole body physiology.

Activated mTORC1 signaling (top) correlates with increased FGF21 expression (below) in human liver tumor.

University of Basel, Biozentrum

The protein mTOR regulates cell growth and metabolism and thus plays a key role in the development of human disorders. In the cell, this regulatory protein is found in two structurally and functionally distinct protein complexes called mTORC1 and mTORC2. In a recent study, the research group of Prof. Michael Hall from the Biozentrum of the University of Basel has shed light on the role of hepatic mTORC1 in whole body physiology and the relevance for human liver cancers.

Hepatic mTORC1 controls whole body physiology

In mammals, the liver is a key organ that controls whole body physiology in response to nutrients. Hall’s team investigated the role of the nutrient sensor mTORC1 in this process. The researchers were able to show that activation of mTORC1 in the liver of mice reduces not only hepatic lipid metabolism but also locomotor activity and body temperature.

Upon investigating the underlying molecular mechanism, they observed that mTORC1 hyperactivation enhances the level of the stress hormone FGF21 by depletion of the amino acid glutamine. Treatment of animals with glutamine reduced the level of FGF21 and thus prevented the physiological impairments.

Cancer treatment with mTORC1 inhibitors

Human cancers often exhibit aberrant mTORC1 signaling and glutamine addiction. “We were excited to see that in human liver tumors mTORC1 signaling correlates with FGF21 expression”, comments cell biologist Dr. Marion Cornu and first author of the study.

Moreover, mTORC1 inhibitors such as rapamycin are currently used as immunosuppressive agents and anti-cancer drugs. Thus, the novel findings of Hall’s team provide evidence that treatment of glutamine addicted human cancers with rapamycin might have beneficial effects by blocking tumor growth and by preventing deregulation of whole body physiology.

Original citation
Marion Cornu, Wolfgang Oppliger, Verena Albert, Aaron M. Robitaille, Francesca Trapani, Luca Quagliata, Tobias Fuhrer, Uwe Sauer, Luigi Terracciano, Michael N. Hall
Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21
PNAS; published online 31 July 2014 | doi: 10.1073/pnas.1412047111

Further information
Prof. Michael N. Hall, University of Basel, Biozentrum, phone: +41 61 267 21 50, email:

Weitere Informationen:

Olivia Poisson | Universität Basel
Further information:

Further reports about: Cancer FGF21 Physiology activity developing diseases glutamine hepatic mTOR mTORC1 metabolism temperature

More articles from Life Sciences:

nachricht New study reveals what's behind a tarantula's blue hue
01.12.2015 | University of California - San Diego

nachricht Tracing a path toward neuronal cell death
01.12.2015 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>