Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aberrant mTOR Signaling Impairs Whole Body Physiology

11.08.2014

The protein mTOR is a central controller of growth and metabolism.

Deregulation of mTOR signaling increases the risk of developing metabolic diseases such as diabetes, obesity and cancer. In the current issue of the journal Proceedings of the National Academy of Sciences, researchers from the Biozentrum of the University of Basel describe how aberrant mTOR signaling in the liver not only affects hepatic metabolism but also whole body physiology.


Activated mTORC1 signaling (top) correlates with increased FGF21 expression (below) in human liver tumor.

University of Basel, Biozentrum

The protein mTOR regulates cell growth and metabolism and thus plays a key role in the development of human disorders. In the cell, this regulatory protein is found in two structurally and functionally distinct protein complexes called mTORC1 and mTORC2. In a recent study, the research group of Prof. Michael Hall from the Biozentrum of the University of Basel has shed light on the role of hepatic mTORC1 in whole body physiology and the relevance for human liver cancers.

Hepatic mTORC1 controls whole body physiology

In mammals, the liver is a key organ that controls whole body physiology in response to nutrients. Hall’s team investigated the role of the nutrient sensor mTORC1 in this process. The researchers were able to show that activation of mTORC1 in the liver of mice reduces not only hepatic lipid metabolism but also locomotor activity and body temperature.

Upon investigating the underlying molecular mechanism, they observed that mTORC1 hyperactivation enhances the level of the stress hormone FGF21 by depletion of the amino acid glutamine. Treatment of animals with glutamine reduced the level of FGF21 and thus prevented the physiological impairments.

Cancer treatment with mTORC1 inhibitors

Human cancers often exhibit aberrant mTORC1 signaling and glutamine addiction. “We were excited to see that in human liver tumors mTORC1 signaling correlates with FGF21 expression”, comments cell biologist Dr. Marion Cornu and first author of the study.

Moreover, mTORC1 inhibitors such as rapamycin are currently used as immunosuppressive agents and anti-cancer drugs. Thus, the novel findings of Hall’s team provide evidence that treatment of glutamine addicted human cancers with rapamycin might have beneficial effects by blocking tumor growth and by preventing deregulation of whole body physiology.

Original citation
Marion Cornu, Wolfgang Oppliger, Verena Albert, Aaron M. Robitaille, Francesca Trapani, Luca Quagliata, Tobias Fuhrer, Uwe Sauer, Luigi Terracciano, Michael N. Hall
Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21
PNAS; published online 31 July 2014 | doi: 10.1073/pnas.1412047111

Further information
Prof. Michael N. Hall, University of Basel, Biozentrum, phone: +41 61 267 21 50, email: m.hall@unibas.ch

Weitere Informationen:

http://unibas.ch/index.cfm?uuid=AF35AC9D0686646B179E1217CF5F88BF&type=search...

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Cancer FGF21 Physiology activity developing diseases glutamine hepatic mTOR mTORC1 metabolism temperature

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>