Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ABC of a stress response

22.03.2010
The identification of a gene involved in the response of plants to water stress should help breed better crop varieties

When plants become desiccated, tiny leaf pores collectively called stomata close to conserve water. Each stoma is flanked by a pair of ‘guard cells’, which change shape to open or close the central pore.

This stress response involves the plant hormone abscisic acid (ABA). When produced in vascular tissues, ABA can act locally within cells via several known ABA receptors. However, to act on distant targets such as guard cells, this hormone must first be released from ABA-producing cells, raising the question of how it crosses the outer cell membrane.

To address this, Takashi Kuromori and colleagues of RIKEN Plant Science Center, Yokohama, screened over 12,000 lines of Arabidopsis—a commonly used plant model—for ABA-related mutants. Their identification of a mutant hypersensitive to ABA at the germination and seedling stages has led to the isolation of a gene encoding a type of ‘ATP-binding cassette (ABC) transporter’.

ABC transporters use chemical energy stored in the biological molecule ATP to transport molecules across cell membranes and are present in organisms from bacteria to animals, including humans, but are especially prevalent in plants.

“Arabidopsis has 130 ABC transporter genes, while rice and beans each have more than 100, which means plants have 2–3 times more than other species,” says Kuromori.“We believe that some kinds of ABC transporters evolved to have important plant-specific functions in plant development and physiological regulation.”

The newly identified transporter, AtABCG25, is expressed mainly in vascular tissues, such as roots and leaf veins. Importantly, this transporter localizes to the outer cell membrane. Some types of ABC transporter localize to membranes surrounding structures within cells which means that they could not transport ABA out of ABA-producing cells to be released into the spaces between cells.

Plants genetically engineered to over express AtABCG25 had higher leaf temperature compared to normal plants and decreased water loss from isolated leaves. The researchers believe that ABA built up in the guard cells of the engineered plants, causing enhanced stomatal closure.

Although it remains unclear how ABA reached the guard cells from vascular tissues, they hope that their findings will lead to the breeding of stress-tolerant crops.

“To date, research on plant stress tolerance has focused on ABA synthesis and/or the expression of ABA target genes,” says Kuromori. “However, our results suggest the possibility of establishing methods to control ABA transport and migration, which could lead to new techniques for breeding stress-tolerant plants.”

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science Center.

Journal information

1. Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y. & Shinozaki, K. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences USA 107, 2361–2366 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6216
http://www.researchsea.com

Further reports about: ABA AtABCG25 Kuromori RIKEN Science TV abscisic acid cell membrane

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>