Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The ABC of a stress response

The identification of a gene involved in the response of plants to water stress should help breed better crop varieties

When plants become desiccated, tiny leaf pores collectively called stomata close to conserve water. Each stoma is flanked by a pair of ‘guard cells’, which change shape to open or close the central pore.

This stress response involves the plant hormone abscisic acid (ABA). When produced in vascular tissues, ABA can act locally within cells via several known ABA receptors. However, to act on distant targets such as guard cells, this hormone must first be released from ABA-producing cells, raising the question of how it crosses the outer cell membrane.

To address this, Takashi Kuromori and colleagues of RIKEN Plant Science Center, Yokohama, screened over 12,000 lines of Arabidopsis—a commonly used plant model—for ABA-related mutants. Their identification of a mutant hypersensitive to ABA at the germination and seedling stages has led to the isolation of a gene encoding a type of ‘ATP-binding cassette (ABC) transporter’.

ABC transporters use chemical energy stored in the biological molecule ATP to transport molecules across cell membranes and are present in organisms from bacteria to animals, including humans, but are especially prevalent in plants.

“Arabidopsis has 130 ABC transporter genes, while rice and beans each have more than 100, which means plants have 2–3 times more than other species,” says Kuromori.“We believe that some kinds of ABC transporters evolved to have important plant-specific functions in plant development and physiological regulation.”

The newly identified transporter, AtABCG25, is expressed mainly in vascular tissues, such as roots and leaf veins. Importantly, this transporter localizes to the outer cell membrane. Some types of ABC transporter localize to membranes surrounding structures within cells which means that they could not transport ABA out of ABA-producing cells to be released into the spaces between cells.

Plants genetically engineered to over express AtABCG25 had higher leaf temperature compared to normal plants and decreased water loss from isolated leaves. The researchers believe that ABA built up in the guard cells of the engineered plants, causing enhanced stomatal closure.

Although it remains unclear how ABA reached the guard cells from vascular tissues, they hope that their findings will lead to the breeding of stress-tolerant crops.

“To date, research on plant stress tolerance has focused on ABA synthesis and/or the expression of ABA target genes,” says Kuromori. “However, our results suggest the possibility of establishing methods to control ABA transport and migration, which could lead to new techniques for breeding stress-tolerant plants.”

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science Center.

Journal information

1. Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y. & Shinozaki, K. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences USA 107, 2361–2366 (2010)

Saeko Okada | Research asia research news
Further information:

Further reports about: ABA AtABCG25 Kuromori RIKEN Science TV abscisic acid cell membrane

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>