Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ABC of a stress response

22.03.2010
The identification of a gene involved in the response of plants to water stress should help breed better crop varieties

When plants become desiccated, tiny leaf pores collectively called stomata close to conserve water. Each stoma is flanked by a pair of ‘guard cells’, which change shape to open or close the central pore.

This stress response involves the plant hormone abscisic acid (ABA). When produced in vascular tissues, ABA can act locally within cells via several known ABA receptors. However, to act on distant targets such as guard cells, this hormone must first be released from ABA-producing cells, raising the question of how it crosses the outer cell membrane.

To address this, Takashi Kuromori and colleagues of RIKEN Plant Science Center, Yokohama, screened over 12,000 lines of Arabidopsis—a commonly used plant model—for ABA-related mutants. Their identification of a mutant hypersensitive to ABA at the germination and seedling stages has led to the isolation of a gene encoding a type of ‘ATP-binding cassette (ABC) transporter’.

ABC transporters use chemical energy stored in the biological molecule ATP to transport molecules across cell membranes and are present in organisms from bacteria to animals, including humans, but are especially prevalent in plants.

“Arabidopsis has 130 ABC transporter genes, while rice and beans each have more than 100, which means plants have 2–3 times more than other species,” says Kuromori.“We believe that some kinds of ABC transporters evolved to have important plant-specific functions in plant development and physiological regulation.”

The newly identified transporter, AtABCG25, is expressed mainly in vascular tissues, such as roots and leaf veins. Importantly, this transporter localizes to the outer cell membrane. Some types of ABC transporter localize to membranes surrounding structures within cells which means that they could not transport ABA out of ABA-producing cells to be released into the spaces between cells.

Plants genetically engineered to over express AtABCG25 had higher leaf temperature compared to normal plants and decreased water loss from isolated leaves. The researchers believe that ABA built up in the guard cells of the engineered plants, causing enhanced stomatal closure.

Although it remains unclear how ABA reached the guard cells from vascular tissues, they hope that their findings will lead to the breeding of stress-tolerant crops.

“To date, research on plant stress tolerance has focused on ABA synthesis and/or the expression of ABA target genes,” says Kuromori. “However, our results suggest the possibility of establishing methods to control ABA transport and migration, which could lead to new techniques for breeding stress-tolerant plants.”

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science Center.

Journal information

1. Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y. & Shinozaki, K. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences USA 107, 2361–2366 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6216
http://www.researchsea.com

Further reports about: ABA AtABCG25 Kuromori RIKEN Science TV abscisic acid cell membrane

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>