Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ABC of a stress response

22.03.2010
The identification of a gene involved in the response of plants to water stress should help breed better crop varieties

When plants become desiccated, tiny leaf pores collectively called stomata close to conserve water. Each stoma is flanked by a pair of ‘guard cells’, which change shape to open or close the central pore.

This stress response involves the plant hormone abscisic acid (ABA). When produced in vascular tissues, ABA can act locally within cells via several known ABA receptors. However, to act on distant targets such as guard cells, this hormone must first be released from ABA-producing cells, raising the question of how it crosses the outer cell membrane.

To address this, Takashi Kuromori and colleagues of RIKEN Plant Science Center, Yokohama, screened over 12,000 lines of Arabidopsis—a commonly used plant model—for ABA-related mutants. Their identification of a mutant hypersensitive to ABA at the germination and seedling stages has led to the isolation of a gene encoding a type of ‘ATP-binding cassette (ABC) transporter’.

ABC transporters use chemical energy stored in the biological molecule ATP to transport molecules across cell membranes and are present in organisms from bacteria to animals, including humans, but are especially prevalent in plants.

“Arabidopsis has 130 ABC transporter genes, while rice and beans each have more than 100, which means plants have 2–3 times more than other species,” says Kuromori.“We believe that some kinds of ABC transporters evolved to have important plant-specific functions in plant development and physiological regulation.”

The newly identified transporter, AtABCG25, is expressed mainly in vascular tissues, such as roots and leaf veins. Importantly, this transporter localizes to the outer cell membrane. Some types of ABC transporter localize to membranes surrounding structures within cells which means that they could not transport ABA out of ABA-producing cells to be released into the spaces between cells.

Plants genetically engineered to over express AtABCG25 had higher leaf temperature compared to normal plants and decreased water loss from isolated leaves. The researchers believe that ABA built up in the guard cells of the engineered plants, causing enhanced stomatal closure.

Although it remains unclear how ABA reached the guard cells from vascular tissues, they hope that their findings will lead to the breeding of stress-tolerant crops.

“To date, research on plant stress tolerance has focused on ABA synthesis and/or the expression of ABA target genes,” says Kuromori. “However, our results suggest the possibility of establishing methods to control ABA transport and migration, which could lead to new techniques for breeding stress-tolerant plants.”

The corresponding author for this highlight is based at the Gene Discovery Research Group, RIKEN Plant Science Center.

Journal information

1. Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y. & Shinozaki, K. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences USA 107, 2361–2366 (2010)

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6216
http://www.researchsea.com

Further reports about: ABA AtABCG25 Kuromori RIKEN Science TV abscisic acid cell membrane

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>