Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What can a New Zealand reptile tell us about false teeth?

08.09.2010
Using a moving 3D computer model based on the skull and teeth of a New Zealand reptile called tuatara, a BBSRC-funded team from the University of Hull, University College London and the Hull York Medical School has revealed how damage to dental implants and jaw joints may be prevented by sophisticated interplay between our jaws, muscles and brain. This research will appear in a future edition of the Journal of Biomechanics.

The tuatara is a lizard-like reptile that has iconic status in its homeland of New Zealand because its ancestors were widespread at the time of the dinosaurs. Unlike mammals and crocodiles which have teeth held in sockets by a flexible ligament, tuatara have teeth that are fused to their jaw bone - they have no ligament, much like modern dental implants.

BBSRC postdoctoral fellow Dr Neil Curtis from the University of Hull said “Humans and many other animals prevent damage to their teeth and jaws when eating because the ligament that holds each tooth in place also feeds back to the brain to warn against biting too hard.”

Dr Marc Jones from UCL, also a BBSRC postdoctoral fellow, added “In the sugar-rich western world many people end up losing their teeth and have to live with dentures or dental implants instead. They’ve also lost the periodontal ligament that would attach their teeth so we wanted to know how their brains can tell what’s going on when they are eating.”

The team has created a 3-D computer model of the skull of the tuatara to investigate the feedback that occurs between the jaw joints and muscles in a creature that lacks periodontal ligaments.

“Tuataras live happily for over 60 years in the wild without replacing their teeth because they have the ability to unconsciously measure the forces in their jaw joint and adjust the strength of the jaw muscle contractions accordingly”, said Dr Curtis.

Although this explains why tuatara and people with false teeth manage not to break their teeth and don’t end up with jaw joint disorders, it is still clear that having a periodontal ligament is very useful, in particular for fine tuning chewing movements. This may explain why it has evolved independently in the ancestors of mammals, crocodiles, dinosaurs, and even some fish.

There is anecdotal evidence to suggest that people with implants and dentures may make food choices related to their lack of periodontal ligament. However, the tuatara pursues a broad diet on the islands where they live including beetles, spiders, snails, frogs and occasionally young seabirds.

Professor Douglas Kell, BBSRC Chief Executive said “To support the extension of health and wellbeing into old age, it is vital that we appreciate how we as human beings have developed our extraordinary ability to adapt to adverse situations. This work allows us to understand some of the complexities of the feedback and responses occurring in healthy human bodies and brains. It is impossible in evolution to predict future innovations such as dental implants and yet this research indicates a level of redundancy in our biology that opens opportunities to support long term health and wellbeing.”

Nancy Mendoza | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>