Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A worm-and-mouse tale: B cells deserve more respect

02.03.2009
By studying how mice fight off infection by intestinal worms – a condition that affects more than 1 billion people worldwide – scientists have discovered that the immune system is more versatile than has long been thought.

The work with worms is opening a new avenue of exploration in the search for treatments against autoimmune diseases like diabetes and asthma, where the body mistakenly attacks its own tissues.

The findings, reported by scientists who performed the work at the Trudeau Institute in Saranac Lake, N.Y., and who are now at the University of Rochester Medical Center, appear in the March issue of the journal Immunity. The article was published online Feb. 26.

The research focuses mainly on B cells, one of many types of immune cells that the body maintains to fight off invaders like bacteria, viruses, and parasites. Besides B cells, there are T cells, macrophages, neutrophils, monocytes, mast cells and others, all working in concert to keep an organism healthy. The cells cruise our bodies, looking to eliminate infectious threats before they become a serious risk to our health.

For many years, scientists believed that the major job of B cells was to identify foreign invaders and tag them with antibodies, marking the microbe for destruction by the immune system. But scientists are discovering that B cells do much more, resulting in new information about our immune system that could be useful for developing more effective vaccines and better treatments for many types of disease.

In the past few years, Frances Lund, Ph.D., professor of Medicine in the Division of Allergy/Immunology and Rheumatology at the University of Rochester Medical Center, has found an array of unexpected functions for B cells. In the laboratory, she has found that B cells produce chemical signaling molecules known as cytokines that spur other immune cells in the body to action. Her team has also shown that B cells are crucial for presenting to T cells snippets of proteins from invaders, so that the T cells can recognize the invader, a crucial step that allows T cells to mature into useful cells which can then fight an infection efficiently.

In the new paper, Lund's team tested how the findings actually translate by watching closely as an organism – in this case, a mouse – actually fights off infection by a parasite. They chose to study the intestinal parasite Heligmosomoides polygyrus, a bright red worm about one-third of an inch long that infects mice.

It's a cousin of the scores of worms that infect more than 1 billion people worldwide. Roundworms, hookworms, pinworms, and others – these and other worms cause fatigue, diarrhea, nausea, and death.

"Nematodes – worms – sicken a lot of people, they can cause severe malnutrition, and they play havoc with the immune system, making many people more vulnerable to other threats, such as malaria," said Lund, whose project was funded by the National Institute of Allergy and Infectious Diseases.

The team not only verified the additional actions of B cells that they've discovered in the laboratory, but, importantly, they showed that these functions are crucial for the organism to fight off infection.

Lund's team showed that the chemical messengers produced by B cells, such as interleukin-2 and tumor necrosis factor, are necessary for the immune system to protect mice against Heligmosomoides polygyrus. The team also showed that B cells must be present in order for T cells to mature and operate properly.

"It's long been dogma that B cells need the help of T cells to make antibody. That's in all the textbooks," said Lund. "Now work from our laboratory and others shows that it's a two-way street, that T cells need the help of B cells also."

B cells' effects on T cells may open a new window on such diseases as lupus, asthma, multiple sclerosis, and diabetes, where doctors know that T cells are active. Maybe manipulating B cells offers a new way to affect the activity and survival of the T cells that cause disease.

The work also brings up the possibility of more targeted treatments than current treatments, which generally affect all B cells. Lund has found that different B cells produce different collections of chemical signaling molecules. Someday, instead of having a drug that simply targets all B cells, it may be possible to target a specific type of cell, cutting down side effects and making a treatment more effective.

"It may be that only certain B cells play a role in damaging immune responses. If we can narrow down the group of cells at the root of the problem, we may be able to find important new targets for improving treatment," said Lund.

Tom Rickey | EurekAlert!
Further information:
http://www.urmc.rochester.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>