Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A 'warhead' molecule to hunt down deadly bacteria

12.03.2015

Modifying bacterial lipids can label and target deadly bacteria, spare healthy cells

Targeting deadly, drug-resistant bacteria poses a serious challenge to researchers looking for antibiotics that can kill pathogens without causing collateral damage in human cells. A team of Boston College chemists details a new approach using a "warhead" molecule to attack bacteria -- and spare healthy human cells -- by targeting a pair of lipids found on the surface of deadly germs, according to a report today in the journal Nature Communications.

The new strategy required the researchers to develop a novel type of "warhead molecule" capable of selectively targeting bacteria, overcoming biological conditions that interfere with bonding to pathogens and avoiding healthy human cells, said Boston College Associate Professor of Chemistry Jianmin Gao, the lead author of the report.

The BC team found answers to those challenges in the covalent chemistry of lipids, Gao said.

"In contrast to other efforts focused on the charge-to-charge attraction between molecules, we are using a completely different mechanism to target bacterial cells," said Gao. "Our method exploits the covalent chemistry of lipids - where the lipids react with synthetic molecules to form new chemical structures based on the formation of new covalent bonds."

Pathogenic bacteria that are resistant to conventional antibiotics pose increasingly serious threats to public health. Researchers in medicinal chemistry, particularly those who seek to develop new antibiotics, are constantly looking for new ways to identify and differentiate bacterial pathogens from host cells within the human body.

Gao said bacterial cells are known to display a different set of lipids in their membranes. Prior research has focused on the use of positively charged peptides to target negatively charged lipids on the surface of bacterial cells. The approach has seen limited success as the charge-charge attraction between the attacking molecules and bacteria is prone to weakening by the presence of salt and other molecules, said Gao.

The researchers developed a novel, unnatural amino acid that serves as a suitable molecular warhead to target bacterial pathogens. Gao and his group sent the warhead molecule after bacterial lipids known as amine-presenting lipids -- specifically phosphatidylethanolamine (PE) and lysyl phosphatidylglycerol (Lys-PG) - which can be selectively derivatized to form iminoboronates, a covalent bond forming process that allows the selective recognition and labeling of bacterial cells.

In addition, because amine-presenting lipids are scarce on the surface of mammalian cells, they are able to seek out and label bacterial cells with a high degree of selectivity, Gao said. Furthermore, iminoboronate formation can be reversed under physiologic conditions, giving the new method a high degree of control and allowing the warhead molecules to self-correct if unintended targets are reached.

Gao said a large number of bacterial species present PE and Lys-PG on their surfaces, making the covalent labeling strategy applicable to many applications in the diagnosis of bacterial infections and the delivery of antibiotic therapies.

"For the short term, we hope this work will inspire other people to consider using covalent chemistry for interrogating biological systems," Gao said. "Going into the future, we are excited to explore the potential of our chemistry for imaging bacterial infections. We are also working hard to apply our current findings to facilitate the targeted delivery of potent antibiotics to bacterial cells only."

Media Contact

Ed Hayward
ed.hayward@bc.edu
617-552-4826

 @BostonCollege

http://www.bc.edu 

Ed Hayward | EurekAlert!

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>