Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A vocabulary of ancient peptides

28.12.2015

Max Planck scientists identify fragments of proteins that already existed billions of years ago

Proteins and languages share many similarities – both, for instance, yield their meaning through a proper arrangement of basic building blocks. Andrei Lupas, Director at the Max Planck Institute for Developmental Biology in Germany, and his team apply computational methods to reconstruct primordial building blocks by comparative studies of modern proteins.


The first folded proteins seem to have originated from an ancestral set of peptides.

© MPI for Developmental Biology/ Vikram Alva

The same approach is used in linguistics to reconstruct ancient vocabularies through the comparison of modern languages. In a recent study the scientists report the identification of 40 ancestral, peptidic fragments, which possibly represent the observable remnants of a time when the first proteins were created, more than 3.5 billion years ago.

Proteins are integral building blocks of all life, from bacteria to humans. In our bodies, they are essential for all chemical processes: they form our nails, hair, bones, and muscles, they help digest the food we eat, and they defend us form pathogenic bacteria and viruses.

“Life can be viewed as substantially resulting from the chemical activity of proteins”, says Lupas, Director of the Department of Protein Evolution at the Max Planck Institute for Developmental Biology. He and his collaborators are particularly interested in understanding how these complex biomolecules originated.

Today we know that proteins are primarily built through the combinatorial assembly of only a few thousand modular units, termed domains. It is however unclear how these modular units themselves emerged.

The scientists investigated the hypothesis that the first protein domains arose by fusion and piecemeal growth from an ancestral set of simple peptides, which themselves emerged in an RNA-based pre-cellular life, around 3.5 billion years ago.

In a systematic analysis of modern proteins, they were able to identify 40 peptidic fragments that occur in seemingly unrelated proteins, yet bear striking resemblance in their sequences and structures. Based on their widespread occurrence in the most ancient proteins (e.g., ribosomal proteins) and on their involvement in basal functions (e.g., RNA-binding, DNA-binding), the authors propose that these fragments are the observable remnants of a primordial RNA-peptide world, a precursor form of the DNA-based life we know today.

In the future, the contribution of these fragments to the formation of protein structure will have to be investigated experimentally, opening new avenues to optimize existing proteins and design new ones, not yet seen in nature. "If we elucidate this process, we should be able to create new protein forms”, concludes Lupas, with exciting applications to biotechnology.


Contact

Prof. Dr. Andrei N. Lupas
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-340

Fax: +49 7071 601-349

Email: andrei.lupas@tuebingen.mpg.de

 
Nadja Winter
Max Planck Institute for Developmental Biology, Tübingen
Phone: +49 7071 601-444

Fax: +49 7071 601-446

Email: presse-eb@tuebingen.mpg.de


Original publication
Alva V, Söding J, Lupas AN

A vocabulary of ancient peptides at the origin of folded proteins.

Elife. 2015 Dec 14;4. pii: e09410. doi: 10.7554/eLife.09410

Prof. Dr. Andrei N. Lupas | Max Planck Institute for Developmental Biology, Tübingen
Further information:
https://www.mpg.de/9813584/peptides-ancestral-evolution?filter_order=L&research_topic=

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>