Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a versatile gut bacterium helps us get our daily dietary fiber

20.01.2014
University of British Columbia researchers have discovered the genetic machinery that turns a common gut bacterium into the Swiss Army knife of the digestive tract – helping us metabolize a main component of dietary fibre from the cell walls of fruits and vegetables.

The findings illuminate the specialized roles played by key members of the vast microbial community living in the human gut, and could inform the development of tailored microbiota transplants to improve intestinal health after antibiotic use or illness. The research is published today in the journal Nature.


This image shows Bacteroides ovatus, wild strain.

Credit: Harry Brumer, UBC

"While they are vital to our diet, the long chains of natural polymeric carbohydrates that make up dietary fibre are impossible for humans to digest without the aid of our resident bacteria," says UBC professor Harry Brumer, with UBC's Michael Smith Laboratories and Department of Chemistry, and senior author of the study.

"This newly discovered sequence of genes enables Bacteroides ovatus to chop up xyloglucan, a major type of dietary fibre found in many vegetables – from lettuce leaves to tomato fruits. B. ovatus and its complex system of enzymes provide a crucial part of our digestive toolkit."

About 92 per cent of the population harbours bacteria with a variant of the gene sequence, according to the researchers' survey of public genome data from 250 adult humans.

"The next question is whether other groups in the consortium of gut bacteria work in concert with, or in competition with, Bacteroides ovatus to target these, and other, complex carbohydrates," says Brumer.

Background

The bacterial communities living in the human gut – roughly 100 trillion microorganisms – account for 50 per cent of the weight of the contents of the lower digestive tract in humans. Up to 10 per cent of our daily caloric intake can come from the breakdown of dietary fibre by our gut bacteria.

Researchers from the University of Michigan, the University of York, and the Swedish Royal Institute of Technology were also involved in the study.

Harry Brumer | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>