Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A variant of the gene GFI1 predisposes to a subtype of blood cancer

19.01.2010
This study on AML was coordinated in Montreal by Dr. Tarik Möröy (IRCM) in collaboration with multiple international study groups

A large international research group led by Dr. Tarik Möröy, a researcher at the Institut de recherches cliniques de Montréal (IRCM), has discovered that a variant of the gene "Growth Factor Independence 1" (GFI1) predisposes humans to develop acute myeloid leukemia (AML), a certain subtype of blood cancer.

This study was coordinated by Dr. Möröy at the IRCM in collaboration with multiple international study groups located throughout Germany, the Netherlands and the United States. This new finding has been prepublished online in Blood, the Journal of the American Society of Hematology. Dr. Cyrus Khandanpour, medical doctor and postdoctoral fellow in Dr. Möröy's group at the IRCM, is the first author of the study.

The study describes and validates the association between a variant form of GFI1 (called GFI136N) and AML in two large patient cohorts (comprising about 1,600 patients from Germany and the Netherlands) and the respective controls. The association between GFI136N and other already established markers in the field of AML was examined in collaboration with several study clinics in Rotterdam, Nijmegen (Netherlands), Dresden, Essen, Munich (Germany), Columbus and City of Hope (USA) showing that GFI136N is a new independent marker for predisposition to AML. "This extensive collaboration effort resulted in one of the largest association studies published in the field of AML," pointed out Dr. Möröy.

The researchers performed different examinations showing that GFI136N behaves differently than its more common form. "A possible explanation for the predisposition to AML this variant leads to," mentioned Dr. Khandanpour, "is that it cannot interact with all the proteins the more common GFI1 usually interacts with. One reason for this is a different localization of this variant within the cell, but different functions of the variant at the molecular level may also account for this behaviour."

Carriers of this variant have a 60% higher risk of developing AML. This study brings new insight on the development of AML and suggests also that GFI136N might be used in the future as a new biomarker for evaluating prognosis in AML patients.

This work was supported in part by a grant from CRS–The Cancer Research Society (Canada) to Dr. Möröy and by the COLE Foundation, which granted a fellowship to Dr. Khandanpour.

References for this article are available at: http://bloodjournal.hematologylibrary.org/papbyrecent.dtl

Blood First Edition Paper, prepublished online January 15, 2010; DOI 10.1182/blood-2009-08-239822

Dr. Tarik Möröy is President and Scientific Director of the IRCM, Full Research Professor IRCM and Director of the Research Unit on Hematopoiesis and Cancer at the IRCM. He is also Full Research Professor in the Department of Microbiology and Immunology and accredited member in the Department of Biochemistry at the Université de Montréal. In addition, he is Adjunct Professor in the Department of Biochemistry and a member of the Division of Experimental Medicine at McGill University. Dr. Möröy holds a Tier 1 Canada Research Chair in Hematopoiesis and Immune Cell Differentiation. Dr. Cyrus Khandanpour is a medical doctor and postdoctoral fellow in Dr. Möröy's laboratory and holder of a COLE Foundation fellowship.

Established in 1967, the IRCM (www.ircm.qc.ca) now has 36 research units specialized in areas as diverse as immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry, clinical research and bioethics. It has a staff of more than 450 people. The IRCM is an independent institution, affiliated with the Université de Montréal and its clinic is associated to the Centre hospitalier de l'Université de Montréal (CHUM). The IRCM holds a close collaboration with McGill University.

Olivier Lagueux | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>