Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A variant of the gene GFI1 predisposes to a subtype of blood cancer

This study on AML was coordinated in Montreal by Dr. Tarik Möröy (IRCM) in collaboration with multiple international study groups

A large international research group led by Dr. Tarik Möröy, a researcher at the Institut de recherches cliniques de Montréal (IRCM), has discovered that a variant of the gene "Growth Factor Independence 1" (GFI1) predisposes humans to develop acute myeloid leukemia (AML), a certain subtype of blood cancer.

This study was coordinated by Dr. Möröy at the IRCM in collaboration with multiple international study groups located throughout Germany, the Netherlands and the United States. This new finding has been prepublished online in Blood, the Journal of the American Society of Hematology. Dr. Cyrus Khandanpour, medical doctor and postdoctoral fellow in Dr. Möröy's group at the IRCM, is the first author of the study.

The study describes and validates the association between a variant form of GFI1 (called GFI136N) and AML in two large patient cohorts (comprising about 1,600 patients from Germany and the Netherlands) and the respective controls. The association between GFI136N and other already established markers in the field of AML was examined in collaboration with several study clinics in Rotterdam, Nijmegen (Netherlands), Dresden, Essen, Munich (Germany), Columbus and City of Hope (USA) showing that GFI136N is a new independent marker for predisposition to AML. "This extensive collaboration effort resulted in one of the largest association studies published in the field of AML," pointed out Dr. Möröy.

The researchers performed different examinations showing that GFI136N behaves differently than its more common form. "A possible explanation for the predisposition to AML this variant leads to," mentioned Dr. Khandanpour, "is that it cannot interact with all the proteins the more common GFI1 usually interacts with. One reason for this is a different localization of this variant within the cell, but different functions of the variant at the molecular level may also account for this behaviour."

Carriers of this variant have a 60% higher risk of developing AML. This study brings new insight on the development of AML and suggests also that GFI136N might be used in the future as a new biomarker for evaluating prognosis in AML patients.

This work was supported in part by a grant from CRS–The Cancer Research Society (Canada) to Dr. Möröy and by the COLE Foundation, which granted a fellowship to Dr. Khandanpour.

References for this article are available at:

Blood First Edition Paper, prepublished online January 15, 2010; DOI 10.1182/blood-2009-08-239822

Dr. Tarik Möröy is President and Scientific Director of the IRCM, Full Research Professor IRCM and Director of the Research Unit on Hematopoiesis and Cancer at the IRCM. He is also Full Research Professor in the Department of Microbiology and Immunology and accredited member in the Department of Biochemistry at the Université de Montréal. In addition, he is Adjunct Professor in the Department of Biochemistry and a member of the Division of Experimental Medicine at McGill University. Dr. Möröy holds a Tier 1 Canada Research Chair in Hematopoiesis and Immune Cell Differentiation. Dr. Cyrus Khandanpour is a medical doctor and postdoctoral fellow in Dr. Möröy's laboratory and holder of a COLE Foundation fellowship.

Established in 1967, the IRCM ( now has 36 research units specialized in areas as diverse as immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry, clinical research and bioethics. It has a staff of more than 450 people. The IRCM is an independent institution, affiliated with the Université de Montréal and its clinic is associated to the Centre hospitalier de l'Université de Montréal (CHUM). The IRCM holds a close collaboration with McGill University.

Olivier Lagueux | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>