Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A variant of the gene GFI1 predisposes to a subtype of blood cancer

19.01.2010
This study on AML was coordinated in Montreal by Dr. Tarik Möröy (IRCM) in collaboration with multiple international study groups

A large international research group led by Dr. Tarik Möröy, a researcher at the Institut de recherches cliniques de Montréal (IRCM), has discovered that a variant of the gene "Growth Factor Independence 1" (GFI1) predisposes humans to develop acute myeloid leukemia (AML), a certain subtype of blood cancer.

This study was coordinated by Dr. Möröy at the IRCM in collaboration with multiple international study groups located throughout Germany, the Netherlands and the United States. This new finding has been prepublished online in Blood, the Journal of the American Society of Hematology. Dr. Cyrus Khandanpour, medical doctor and postdoctoral fellow in Dr. Möröy's group at the IRCM, is the first author of the study.

The study describes and validates the association between a variant form of GFI1 (called GFI136N) and AML in two large patient cohorts (comprising about 1,600 patients from Germany and the Netherlands) and the respective controls. The association between GFI136N and other already established markers in the field of AML was examined in collaboration with several study clinics in Rotterdam, Nijmegen (Netherlands), Dresden, Essen, Munich (Germany), Columbus and City of Hope (USA) showing that GFI136N is a new independent marker for predisposition to AML. "This extensive collaboration effort resulted in one of the largest association studies published in the field of AML," pointed out Dr. Möröy.

The researchers performed different examinations showing that GFI136N behaves differently than its more common form. "A possible explanation for the predisposition to AML this variant leads to," mentioned Dr. Khandanpour, "is that it cannot interact with all the proteins the more common GFI1 usually interacts with. One reason for this is a different localization of this variant within the cell, but different functions of the variant at the molecular level may also account for this behaviour."

Carriers of this variant have a 60% higher risk of developing AML. This study brings new insight on the development of AML and suggests also that GFI136N might be used in the future as a new biomarker for evaluating prognosis in AML patients.

This work was supported in part by a grant from CRS–The Cancer Research Society (Canada) to Dr. Möröy and by the COLE Foundation, which granted a fellowship to Dr. Khandanpour.

References for this article are available at: http://bloodjournal.hematologylibrary.org/papbyrecent.dtl

Blood First Edition Paper, prepublished online January 15, 2010; DOI 10.1182/blood-2009-08-239822

Dr. Tarik Möröy is President and Scientific Director of the IRCM, Full Research Professor IRCM and Director of the Research Unit on Hematopoiesis and Cancer at the IRCM. He is also Full Research Professor in the Department of Microbiology and Immunology and accredited member in the Department of Biochemistry at the Université de Montréal. In addition, he is Adjunct Professor in the Department of Biochemistry and a member of the Division of Experimental Medicine at McGill University. Dr. Möröy holds a Tier 1 Canada Research Chair in Hematopoiesis and Immune Cell Differentiation. Dr. Cyrus Khandanpour is a medical doctor and postdoctoral fellow in Dr. Möröy's laboratory and holder of a COLE Foundation fellowship.

Established in 1967, the IRCM (www.ircm.qc.ca) now has 36 research units specialized in areas as diverse as immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry, clinical research and bioethics. It has a staff of more than 450 people. The IRCM is an independent institution, affiliated with the Université de Montréal and its clinic is associated to the Centre hospitalier de l'Université de Montréal (CHUM). The IRCM holds a close collaboration with McGill University.

Olivier Lagueux | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>