Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A urine test for appendicitis?

25.06.2009
Urine marker found though proteomics may indicate which children need surgery

Appendicitis is the most common childhood surgical emergency, but the diagnosis can be challenging, especially in children, often leading to either unnecessary surgery in children without appendicitis, or a ruptured appendix and serious complications when the condition is missed.

Now, emergency medicine physicians and scientists at the Proteomics Center at Children's Hospital Boston demonstrate that a protein detectable in urine might serve as a "biomarker" for appendicitis. Their report was published online June 23 by the Annals of Emergency Medicine.

Despite improvement in imaging technologies, recent figures indicate that 3 to 30 percent of children have unnecessary appendectomies, while 30 to 45 percent of those diagnosed with appendicitis already have a ruptured appendix. Laboratory biomarkers have been identified, but none have proved reliable enough to be clinically useful.

Researchers led by Richard Bachur, MD, acting chief of emergency medicine at Children's Hospital Boston, Hanno Steen, PhD, director of the Proteomics Center, and clinical fellow Alex Kentsis, MD, PhD, decided to take a systematic approach, performing a proteomics study using state-of-the are mass spectrometry (a technique that detects and quantifies proteins in a sample). Their two-part study has identified the most accurate biomarker for acute appendicitis known to date.

In the first phase, they examined 12 urine specimens – 6 from patients with appendicitis, taken before and after appendectomy, and 6 from patients without appendicitis –and identified 32 candidate biomarkers, including many proteins associated with immune response and inflammation. To these 32 they added other candidates found through gene expression studies and other means, yielding a total of 57 potential biomarkers. They then sought to validate these markers in 67 children seen at the hospital for suspected appendicitis over an 18-month period, 25 of whom ultimately had proven appendicitis. The laboratory investigators testing for the markers were not told the patients' clinical status, to ensure unbiased assessment of the test performance.

Seven promising urine biomarkers were identified. The best of them was leucine-rich alpha-2-glycoprotein (LRG), which appears to be a specific marker of local inflammation. It had an "area under the curve" value of 0.97, indicating near-perfect sensitivity (with almost no false-negatives) and near-perfect specificity (almost no false-positives). LRG was strongly elevated in diseased appendices, even when those appendices appeared normal on imaging, and the amount of LRG correlated with the severity of the appendicitis as judged by histologic review of the appendix specimens.

Although mass spectrometry isn't widely available clinically, urine LRG elevations were detected by immunoblotting, suggesting that a rapid clinical test, such as a urine dipstick, could be developed through further research.

Bachur, Steen and Kentsis now seek to develop quantitative LRG urine assays and further validate their findings. "Recent diagnostic advances have focused on advanced radiologic procedures, such as computed tomography and ultrasound, but these resources are not universally available and can delay diagnosis," says Bachur. "Although these advances have improved the diagnosis and decreased complications from appendicitis, CT scans also expose children to radiation that may increase the lifetime risk of cancer."

The researchers note that since their study was limited to children, and that patterns of biomarkers likely vary in older patients, LRG testing would need to be studied in other clinical settings.

Steen, director of the Proteomics Center at Children's, predicts that proteomics will play a major role in discovering diagnostic markers for a variety of pediatric diseases in the future. The hospital made a significant financial investment five years ago to launch the Center.

Mass spectrometry instrumentation was provided by Thermo Scientific. The study was funded in part by the Frederick Lovejoy, Jr, MD Housestaff Research and Education grant and the Children's Hospital Boston Houseofficer Development Award.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 12 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 397-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: www.childrenshospital.org/newsroom.

James Newton | EurekAlert!
Further information:
http://www.childrens.harvard.edu

Further reports about: Biomarker LRG Medical Wellness Medicine Proteomics appendicitis inflammation

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>