Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A turning point for young neurons

26.07.2010
Inward flow of membrane material is critical for repulsive growth cone turning

During neural development, newborn neurons extend axons toward distant targets then form connections with other cells. This process depends on the growth cone, a dynamic structure at the growing axon tip of the neuron that detects attractive and repulsive guidance cues. Many axon guidance molecules have been identified, and their functions are well characterized, but exactly how they cause growth cone turning has been unclear.

Hiroyuki Kamiguchi of the RIKEN Brain Science Institute, Wako, and his colleagues have now shown that repulsive growth cone turning is driven by a process called endocytosis1, whereby portions of the growth cone’s membrane are removed and internalized.

Endocytosis occurs continuously in all neurons to remove receptors and other membrane proteins for recycling, and to take-up neurotransmitters after their release. It is mediated by a molecule called clathrin, which induces formation of spherical ‘pits’ in the membrane that are then pulled into the cell.

By tagging clathrin with a fluorescent marker and observing the cells under a microscope, Kamiguchi’s group visualized the formation and movements of pits in the growth cones of dorsal root ganglion cells from embryonic chicks. They observed pits appearing at the edges of the growth cones that then migrated towards the center. Pit migration was significantly slowed by blebbistatin, a small molecule that inhibits the motor protein myosin II, which moves a structure called the cytoskeleton towards the growth cone center, suggesting that pits are coupled with cytoskeletal flow.

The researchers then induced localized increases of calcium ion concentrations in the growth cones, mimicking their response to repulsive guidance cues. On the side where calcium was elevated, asymmetrical endocytosis resulted and turned the growth cones the other way.

When Kamiguchi and colleagues added compounds that inhibit endocytosis, however, they abolished repulsive turning in response to either increased calcium concentration or repulsive axon guidance molecules. In contrast, they showed that inducing asymmetric endocytosis in the absence of guidance cues and localized increases of calcium concentration was sufficient to cause growth cone turning.

They also calculated that endocytosis removes at least 2% of the growth cone membrane every minute, corresponding to 72% of the total surface area during the entire course of turning.

“We now know that repulsive turning depends on asymmetric endocytosis of adhesion molecules from the growth cone surface,” says Kamiguchi, “but we think it also requires many other unidentified molecules to be internalized and recycled.” The team is conducting large-scale analyses to find them.

The corresponding author for this highlight is based at the Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute

Journal information

1. Tojima, T., Itofusa, R. & Kamiguchi, H. Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. Neuron 66, 370–377 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com
http://www.rikenresearch.riken.jp/eng/research/6338

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>