Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A turning point for young neurons

26.07.2010
Inward flow of membrane material is critical for repulsive growth cone turning

During neural development, newborn neurons extend axons toward distant targets then form connections with other cells. This process depends on the growth cone, a dynamic structure at the growing axon tip of the neuron that detects attractive and repulsive guidance cues. Many axon guidance molecules have been identified, and their functions are well characterized, but exactly how they cause growth cone turning has been unclear.

Hiroyuki Kamiguchi of the RIKEN Brain Science Institute, Wako, and his colleagues have now shown that repulsive growth cone turning is driven by a process called endocytosis1, whereby portions of the growth cone’s membrane are removed and internalized.

Endocytosis occurs continuously in all neurons to remove receptors and other membrane proteins for recycling, and to take-up neurotransmitters after their release. It is mediated by a molecule called clathrin, which induces formation of spherical ‘pits’ in the membrane that are then pulled into the cell.

By tagging clathrin with a fluorescent marker and observing the cells under a microscope, Kamiguchi’s group visualized the formation and movements of pits in the growth cones of dorsal root ganglion cells from embryonic chicks. They observed pits appearing at the edges of the growth cones that then migrated towards the center. Pit migration was significantly slowed by blebbistatin, a small molecule that inhibits the motor protein myosin II, which moves a structure called the cytoskeleton towards the growth cone center, suggesting that pits are coupled with cytoskeletal flow.

The researchers then induced localized increases of calcium ion concentrations in the growth cones, mimicking their response to repulsive guidance cues. On the side where calcium was elevated, asymmetrical endocytosis resulted and turned the growth cones the other way.

When Kamiguchi and colleagues added compounds that inhibit endocytosis, however, they abolished repulsive turning in response to either increased calcium concentration or repulsive axon guidance molecules. In contrast, they showed that inducing asymmetric endocytosis in the absence of guidance cues and localized increases of calcium concentration was sufficient to cause growth cone turning.

They also calculated that endocytosis removes at least 2% of the growth cone membrane every minute, corresponding to 72% of the total surface area during the entire course of turning.

“We now know that repulsive turning depends on asymmetric endocytosis of adhesion molecules from the growth cone surface,” says Kamiguchi, “but we think it also requires many other unidentified molecules to be internalized and recycled.” The team is conducting large-scale analyses to find them.

The corresponding author for this highlight is based at the Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute

Journal information

1. Tojima, T., Itofusa, R. & Kamiguchi, H. Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. Neuron 66, 370–377 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com
http://www.rikenresearch.riken.jp/eng/research/6338

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>