Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Turf Battle in the Retina Helps Internal Clocks See the Light

07.03.2013
With every sunrise and sunset, our eyes make note of the light as it waxes and wanes, a process that is critical to aligning our circadian rhythms to match the solar day so we are alert during the day and restful at night.

Watching the sun come and go sounds like a peaceful process, but Johns Hopkins scientists have discovered that behind the scenes, millions of specialized cells in our eyes are fighting for their lives to help the retina set the stage to keep our internal clocks ticking.

In a study that appeared in a recent issue of Neuron, a team led by biologist Samer Hattar has found that there is a kind of turf war going on behind our eyeballs, where intrinsically photosensitive retinal ganglion cells (ipRGCs) are jockeying for the best position to receive information from rod and cone cells about light levels. By studying these specialized cells in mice, Hattar and his team found that the cells actually kill each other to seize more space and find the best position to do their job.

Understanding this fight could one day lead to victories against several conditions, including autism and some psychiatric disorders, where neural circuits influence our behavior. The results could help scientists have a better idea about how the circuits behind our eyes assemble to influence our physiological functions, said Hattar, an associate professor of biology in the Krieger School of Arts and Sciences.

"In a nutshell, death in our retina plays a vital role in assembling the retinal circuits that influence crucial physiological functions such as circadian rhythms and sleep-wake cycles," Hattar said. "Once we have a greater understanding of the circuit formation underlying all of our neuronal abilities, this could be applied to any neurological function."

Hattar and his team determined that the killing among rival ipRGCs is justifiable homicide: Without this cell death, circadian blindness overcame the mice, who could no longer distinguish day from night. Hattar’s team studied mice that were genetically modified to prevent cell death by removing the Bax protein, an essential factor for cell death to occur. They discovered that if cell death is prevented, ipRGCs distribution is highly affected, leading the surplus cells to bunch up and form ineffectual, ugly clumps incapable of receiving light information from rods and cones for the alignment of circadian rhythms. To detect this, the researchers used wheel running activity measurements in mice that lacked the Bax protein as well as the melanopsin protein which allows ipRGCs to respond only through rods and cones and compared it to animals where only the Bax gene was deleted.

What the authors uncovered was exciting: When death is prevented, the ability of rods and cones to signal light to our internal clocks is highly impaired. This shows that cell death plays an essential role in setting the circuitry that allows the retinal rods and cones to influence our circadian rhythms and sleep.

Hattar’s study was funded by the National Institute of General Medical Sciences and the National Institute of Neurological Disorders and Stroke and was carried out in close collaboration with Rejji Kuruvilla, an associate professor who is another member of the mouse tri-lab community in the Department of Biology at Johns Hopkins.

Copies of the study are available. Contact Amy Lunday at acl@jhu.edu or 443-287-9960.

Hattar’s webpage: http://www.bio.jhu.edu/Faculty/Hattar/Default.html

Johns Hopkins University news releases can be found on the World Wide Web at http://releases.jhu.edu/

Information on automatic E-mail delivery of science and medical news releases is available at the same address.

Amy Lunday | Newswise
Further information:
http://www.jhu.edu/

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>