Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Without a trace: Cells keep to one direction by erasing the path

26.09.2013
Migrating cells, it seems, cover their tracks not for fear of being followed, but to keep moving forward.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have now shown that cells in a zebrafish embryo determine which direction they move in by effectively erasing the path behind them. The findings, published online today in Nature, could have implications not just for development but also for cancer and metastasis.

As a zebrafish embryo develops, a group of cells migrate down the side of its body, leaving clumps of cells along the way. Those clumps will become ear-like organs, sensing vibrations in the water. In the adult fish, this is called the lateral line, so the moving mass in the embryo is dubbed the lateral line primordium. To migrate, these cells follow a trail of a molecule called a chemokine – but how do they know to keep moving in the same direction?

Scientists assumed that the trail was a one-way path: a gradient where cells moved from less- to more-concentrated chemokine. But Darren Gilmour and colleagues at EMBL have now found that, rather than being produced outside them, that gradient is actually generated by the cells themselves.

“We found that the cells at the rear of the group have a ‘vacuum cleaner’,” says Erika Donà, who carried out the work. “They suck up the chemokine at the back, but at the front there’s still a lot of chemokine to follow, so the cells move forward.”

To investigate the role of the ‘vacuum cleaner’ molecule, Gilmour and Donà turned to a ‘detector’ molecule which all cells in the primordium use to sniff out the chemokine, and which the scientists labelled with a tag that goes from green to red as the detector ages. Cells at the front of the primordium glowed green, showing they were in such frequent contact with the chemokine that their detectors were constantly being renewed, while cells at the rear encountered so little chemokine that their detectors had a chance to grow old, painting the cells red.

To show that this gradient is created by the act of sucking up the chemokine, the scientists genetically engineered fish to have the vacuum cleaner molecule in an accompanying nerve rather than at the rear of the primordium itself. When the vacuum cleaner was switched to the nerve, the nerve went from following the migrating primordium to guiding it.

“It makes a lot of sense for the cells to choose their own direction,” says Darren Gilmour, who led the work. “There’s a lot going on in the embryo, lots of cells moving in lots of directions, so it may be very difficult to sustain a gradient. What we’ve shown is that you don’t always need to.”

The study could also be relevant to another, seemingly very different type of moving cells: those in metastasising cancers. Scientists have found that both the ‘detector’ and the ‘vacuum cleaner’ molecule play important roles in different tumours’ ability to metastasise – to spread from one place to another in the body. These findings hint at what those roles might be, and consequently at possible ways to block them.

The colour-changing tag used in this study was first developed by Anton Khmelinskii in the group of EMBL Alumnus Michael Knop, now at the DKFZ-ZMBH Alliance. Joseph Barry in the Huber group helped develop and apply data analysis methods for this work.

The videos accompanying this release are also available on the EMBL YouTube Channel: www.youtube.com/emblmedia.

Published online in Nature on 25 September 2013.
For videos, images and for more information please visit: www.embl.org/press/2013/130925_Heidelberg.

Policy regarding use

EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>