Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A touching story: The ancient conversation between plants, fungi and bacteria

28.08.2014

The mechanical force that a single fungal cell or bacterial colony exerts on a plant cell may seem vanishingly small, but it plays a heavy role in setting up some of the most fundamental symbiotic relationships in biology.

In fact, it may not be too much of a stretch to say that plants may have never moved onto land without the ability to respond to the touch of beneficial fungi, according to a new study led by Jean-Michel Ané, a professor of agronomy at the University of Wisconsin-Madison.

"Many people have studied how roots progress through the soil, when fairly strong stimuli are applied to the entire growing root," says Ané, who just published a review of touch in the interaction between plants and microbes in the journal Current Opinion in Plant Biology. "We are looking at much more localized, tiny stimuli on a single cell that is applied by microbes."

Specifically, Ané, Dhileepkumar Jayaraman, a postdoctoral researcher in agronomy, and Simon Gilroy, a professor of botany, studied how such a slight mechanical stimulus starts round one of a symbiotic relationship — that is, a win-win relationship between two organisms.

It's known that disease-causing fungi build a structure to break through the plant cell wall, "but there is growing evidence that fungi and also bacteria in symbiotic associations use a mechanical stimulation to indicate their presence," says Ané. "They are knocking on the door, but not breaking it down."

After the fungus announces its arrival, the plant builds a tube in which the fungus can grow. "There is clearly a mutual exchange of signals between the plant and the fungus," says Ané. "It's only when the path is completed that the fungus starts to penetrate."

Mycorrhizae are the beneficial fungi that help virtually all land plants absorb the essential nutrients — phosphorus and nitrogen — from the soil. Biologists believe this ubiquitous mechanism began about 450 million years ago, when plants first moved onto land.

Mechanical signaling is only part of the story — microbes and plants also communicate with chemicals, says Ané. "So this is comparable not to breaking the door or even just knocking on the door, but to knocking on the door while wearing cologne. Clearly the plant is much more active than we thought; it can process signals, prepare the path and accept the symbiont."

Beyond fungi, some plants engage in symbiosis with bacteria called rhizobia that "fix" nitrogen from the atmosphere, making it available to the plant.

Rhizobia enable legumes like soybeans and alfalfa to grow without nitrogen fertilizer.

When Ané and his colleagues looked closer, they found that rhizobium symbiosis also employs mechanical stimulation. When the bacterium first contacts a root hair, the hair curls around the bacterium, trapping it.

The phenomenon of curling has been known for almost 100 years. "But why would nature develop such a complicated mechanism to entrap a bacterial colony?" Ané asks. "We propose the purpose is to apply mechanical stimulation" so the plant will start building a home for the rhizobium — for mutual benefit. "We have preliminary evidence that when the entrapment is not complete, the process of colonization does not happen," he says.

Again, the two-step communication system is at work, Ané adds. "The curling process itself can only begin when the plant gets a chemical signal from the bacterium — but the growing tube inside the root hair that accepts the bacteria requires something else, and nobody knew what. We propose it's a mechanical stimulation created by entrapping, which gives the bacterial colony a way to push against the root."

In many respects, this symbiosis parallels the older one between plants and beneficial fungi, Ané says. Indeed, he says legumes have "hijacked" the mycorrhizae system. "Plants used the symbiosis toolkit to develop this relationship with mycorrhizae, and then used it again for bacteria. This dual requirement for chemical and mechanical signals is present in both associations, even though the association between rhizobia and legumes is only 60 million years old."

###

David Tenenbaum
608-265-8549
djtenenb@wisc.edu

Jean-Michel Ané | Eurek Alert!
Further information:
http://www.wisc.edu/

Further reports about: bacterium conversation fungi fungus hair microbes nitrogen symbiosis

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>