Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Tool to Reveal Structure of Proteins

21.03.2012
A new method to reveal the structure of proteins could help researchers understand biological molecules - both those involved in causing disease and those performing critical functions in healthy cells.

For roughly a decade, a technique called solid state nuclear magnetic resonance (NMR) spectroscopy has allowed researchers to detect the arrangements of atoms in proteins that defy study by traditional laboratory tools such as X-ray crystallography. But translating solid state NMR data into an actual 3D protein structures has always been difficult.

In the current online edition of Nature Chemistry, Christopher Jaroniec, associate professor of chemistry at Ohio State University, and his colleagues describe a new solid state NMR method that uses paramagnetic tags to help visualize the shape of protein molecules.

"Structural information about biological molecules is critical to understanding their function," Jaroniec said. "Our new method promises to be a valuable addition to the NMR toolbox for rapidly determining the structures of protein systems which defy analysis with other techniques."

Such protein systems include amyloids, which are fibrous clusters of proteins found in diseased cells, and associated with the development of certain neurological diseases in humans.

"Although for the purposes of the paper we tested the method on a small model protein, the applications are actually quite general," Jaroniec added. "We expect that the method will work on many larger and more challenging proteins."

Protein molecules are made up of long chains of amino acids folded and wrapped around themselves, like tangled spaghetti. Every type of protein folds into its own unique pattern, and the pattern determines its function in the body. Understanding why a protein folds the way it does could give scientists clues on how to destroy a protein, or alter its function.

To test their method, the researchers chose a protein called GB1, a common protein found in streptococcus bacteria. GB1 has been much studied by scientists, so the structure is already known. They engineered a form of the protein in which certain amino acids along the chain were replaced with a different amino acid - cysteine - and created the right chemical conditions for yet another tag - one containing an atom of copper - to stick to the cysteine. The amino acid-copper tags are known as "paramagnetic" molecules, and they significantly influence the signals emitted by the different protein atoms in the magnetic field of an NMR instrument.

The researchers were able to determine the locations of the protein atoms relative to the paramagnetic tags, and use this information to calculate the folded shape of the GB1 protein.

Jaroniec's partners on this project included Ishita Sengupta, Jonathan Helmus and Philippe Nadaud, all doctoral students at Ohio State, and Charles Schwieters of the National Institutes of Health.

This research was supported by the National Science Foundation and the National Institutes of Health.

Contact: Christopher Jaroniec, (614) 247-4284; Jaroniec.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>