Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tiny frozen microbe may hold clues to extraterrestrial life

16.06.2009
A novel bacterium that has been trapped more than three kilometres under glacial ice in Greenland for over 120 000 years, may hold clues as to what life forms might exist on other planets.

Dr Jennifer Loveland-Curtze and a team of scientists from Pennsylvania State University report finding the novel microbe, which they have called Herminiimonas glaciei, in the current issue of the International Journal of Systematic and Evolutionary Microbiology. The team showed great patience in coaxing the dormant microbe back to life; first incubating their samples at 2˚C for seven months and then at 5˚C for a further four and a half months, after which colonies of very small purple-brown bacteria were seen.

H. glaciei is small even by bacterial standards – it is 10 to 50 times smaller than E. coli. Its small size probably helped it to survive in the liquid veins among ice crystals and the thin liquid film on their surfaces. Small cell size is considered to be advantageous for more efficient nutrient uptake, protection against predators and occupation of micro-niches and it has been shown that ultramicrobacteria are dominant in many soil and marine environments.

Most life on our planet has always consisted of microorganisms, so it is reasonable to consider that this might be true on other planets as well. Studying microorganisms living under extreme conditions on Earth may provide insight into what sorts of life forms could survive elsewhere in the solar system.

"These extremely cold environments are the best analogues of possible extraterrestrial habitats", said Dr Loveland-Curtze, "The exceptionally low temperatures can preserve cells and nucleic acids for even millions of years. H. glaciei is one of just a handful of officially described ultra-small species and the only one so far from the Greenland ice sheet; studying these bacteria can provide insights into how cells can survive and even grow under extremely harsh conditions, such as temperatures down to -56˚C, little oxygen, low nutrients, high pressure and limited space."

"H. glaciei isn't a pathogen and is not harmful to humans", Dr Loveland-Curtze added, "but it can pass through a 0.2 micron filter, which is the filter pore size commonly used in sterilization of fluids in laboratories and hospitals. If there are other ultra-small bacteria that are pathogens, then they could be present in solutions presumed to be sterile. In a clear solution very tiny cells might grow but not create the density sufficient to make the solution cloudy".

Dianne Stilwell | EurekAlert!
Further information:
http://ww.sgm.ac.uk

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>