Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A ticking time bomb: Circulating anti-NMDA receptor autoantibodies

Scientists of the CNMPB and of the Max Planck Institute of Experimental Medicine find NMDAR autoantibodies in 10% of all tested individuals, which can cause neuropsychiatric dysfunctions in case of blood brain barrier disturbance. The study has been recently published in the journal Molecular Psychiatry.

“Anti-NMDA receptor encephalitis” was the name given to an acute brain disease, whose potential cause and treatment has been described in a number of recent publications. On the molecular level, this acute form of encephalitis is attended by a reduced function of glutamate receptors (NMDAR), which is caused by autoantibodies against these receptors in the brain.

Symptoms of the disease can be psychosis, movement disorders, epileptic seizures or reduction of cognitive performance in various shapes. However, as most studies are based on a generally fairly small number of patients, they neither cast a light on the relevance of NMDAR autoantibodies in the blood for the pathogenesis of the disease, nor do they yield data about their prevalence in healthy individuals.

Notable new findings are now provided by a new study conducted by Prof. Hannelore Ehrenreich and her team in cooperation with the Göttingen DFG Research Center and Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

The study demonstrates for the first time that NMDAR autoantibodies can be found in the serum of more than 10% of a total of nearly 3000 tested individuals, irrespective of whether they are patients or healthy individuals. Surprisingly, comparable autoantibody titers, antibody classes and functionalities were detected in healthy subjects and patients with a neuropsychiatric disease.

This insight led the authors of the study to the following central question: If, in fact, these autoantibodies play some pathological role, why do healthy individuals bearing them stay healthy?

In a series of animal experiments the scientists could demonstrate that the prerequisite for a triggering of symptoms by these autoantibodies, and thus for the pathogenesis of a disease process, is a dysfunction of the blood-brain barrier. This physiological barrier in a healthy organism delimits the central nervous system like a filter from the general blood stream and thus protects it from circulating pathogenic agents and toxins. A disruption of its natural barrier function enables the NMDAR autoantibodies circulating in the blood to enter the brain. This way, they reach the NMDA receptors located in the brain and can cause an impairment of function resulting in psychosis-similar symptoms, epileptic seizures or cognitive dysfunctions.

"In other words, more than 10% of all individuals carry a 'ticking time bomb', the disease relevance of which is only suppressed by an intact blood-brain barrier“, remarks Prof. Ehrenreich. An impaired blood brain barrier can be caused by a stroke, a brain trauma or by a viral infection, amongst others. In this context, the scientists performed an additional retrospective evaluation based on a large cohort of patients. They demonstrate an increase in the severity of neurological symptoms in subjects with a temporary or persisting blood-brain barrier dysfunction who carry NMDAR autoantibodies in their serum.

The authors of the study for the first time examined the question which factors are, in the end, responsible for triggering the generation of these NMDA autoantibodies. They found, on the one hand, an association of past influenza A or B infections with the appearance of these autoantibodies; on the other hand they identified by means of a genome-wide association study a genetic risk factor related to NMDAR biology.

The study published by first author Christian Hammer and coworkers is not only conceptually novel, it also yields considerable insight into a pathophysiological mechanism that is of crucial importance for neuropsychiatry and also for other clinical disciplines. The scientists commend that “patients with acute or chronic impairment of the blood-brain-barrier, e.g. after a brain injury, a stroke, any kind of encephalitis, epilepsy and also multiple sclerosis should be screened for the presence of NMDAR autoantibodies”. This might contribute to improve the course of disease by appropriate therapeutic methods and prevent long-term complications.


Max Planck Institute of Experimental Medicine
Clinical Neuroscience
Prof. Dr. Hannelore Ehrenreich (
Phone 0551 / 39-3899 615
Hermann-Rein-Str. 3., 37075 Göttingen, Germany
Weitere Informationen:
- Original Publication
- Max Planck Institute of Experimental Medicine
- Cluster of Excellence and DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)

Dr. Heike Benecke | idw
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>