Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A ticking time bomb: Circulating anti-NMDA receptor autoantibodies

23.09.2013
Scientists of the CNMPB and of the Max Planck Institute of Experimental Medicine find NMDAR autoantibodies in 10% of all tested individuals, which can cause neuropsychiatric dysfunctions in case of blood brain barrier disturbance. The study has been recently published in the journal Molecular Psychiatry.

“Anti-NMDA receptor encephalitis” was the name given to an acute brain disease, whose potential cause and treatment has been described in a number of recent publications. On the molecular level, this acute form of encephalitis is attended by a reduced function of glutamate receptors (NMDAR), which is caused by autoantibodies against these receptors in the brain.

Symptoms of the disease can be psychosis, movement disorders, epileptic seizures or reduction of cognitive performance in various shapes. However, as most studies are based on a generally fairly small number of patients, they neither cast a light on the relevance of NMDAR autoantibodies in the blood for the pathogenesis of the disease, nor do they yield data about their prevalence in healthy individuals.

Notable new findings are now provided by a new study conducted by Prof. Hannelore Ehrenreich and her team in cooperation with the Göttingen DFG Research Center and Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

The study demonstrates for the first time that NMDAR autoantibodies can be found in the serum of more than 10% of a total of nearly 3000 tested individuals, irrespective of whether they are patients or healthy individuals. Surprisingly, comparable autoantibody titers, antibody classes and functionalities were detected in healthy subjects and patients with a neuropsychiatric disease.

This insight led the authors of the study to the following central question: If, in fact, these autoantibodies play some pathological role, why do healthy individuals bearing them stay healthy?

In a series of animal experiments the scientists could demonstrate that the prerequisite for a triggering of symptoms by these autoantibodies, and thus for the pathogenesis of a disease process, is a dysfunction of the blood-brain barrier. This physiological barrier in a healthy organism delimits the central nervous system like a filter from the general blood stream and thus protects it from circulating pathogenic agents and toxins. A disruption of its natural barrier function enables the NMDAR autoantibodies circulating in the blood to enter the brain. This way, they reach the NMDA receptors located in the brain and can cause an impairment of function resulting in psychosis-similar symptoms, epileptic seizures or cognitive dysfunctions.

"In other words, more than 10% of all individuals carry a 'ticking time bomb', the disease relevance of which is only suppressed by an intact blood-brain barrier“, remarks Prof. Ehrenreich. An impaired blood brain barrier can be caused by a stroke, a brain trauma or by a viral infection, amongst others. In this context, the scientists performed an additional retrospective evaluation based on a large cohort of patients. They demonstrate an increase in the severity of neurological symptoms in subjects with a temporary or persisting blood-brain barrier dysfunction who carry NMDAR autoantibodies in their serum.

The authors of the study for the first time examined the question which factors are, in the end, responsible for triggering the generation of these NMDA autoantibodies. They found, on the one hand, an association of past influenza A or B infections with the appearance of these autoantibodies; on the other hand they identified by means of a genome-wide association study a genetic risk factor related to NMDAR biology.

The study published by first author Christian Hammer and coworkers is not only conceptually novel, it also yields considerable insight into a pathophysiological mechanism that is of crucial importance for neuropsychiatry and also for other clinical disciplines. The scientists commend that “patients with acute or chronic impairment of the blood-brain-barrier, e.g. after a brain injury, a stroke, any kind of encephalitis, epilepsy and also multiple sclerosis should be screened for the presence of NMDAR autoantibodies”. This might contribute to improve the course of disease by appropriate therapeutic methods and prevent long-term complications.

(cnmpb/mpiem)

Contact:
Max Planck Institute of Experimental Medicine
Clinical Neuroscience
Prof. Dr. Hannelore Ehrenreich (ehrenreich@em.mpg.de)
Phone 0551 / 39-3899 615
Hermann-Rein-Str. 3., 37075 Göttingen, Germany
Weitere Informationen:
http://www.ncbi.nlm.nih.gov/pubmed/23999527
- Original Publication
http://www.em.mpg.de/index.php
- Max Planck Institute of Experimental Medicine
http://www.cnmpb.de
- Cluster of Excellence and DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)

Dr. Heike Benecke | idw
Further information:
http://www.em.mpg.de/index.php

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>