Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A ticking time bomb: Circulating anti-NMDA receptor autoantibodies

23.09.2013
Scientists of the CNMPB and of the Max Planck Institute of Experimental Medicine find NMDAR autoantibodies in 10% of all tested individuals, which can cause neuropsychiatric dysfunctions in case of blood brain barrier disturbance. The study has been recently published in the journal Molecular Psychiatry.

“Anti-NMDA receptor encephalitis” was the name given to an acute brain disease, whose potential cause and treatment has been described in a number of recent publications. On the molecular level, this acute form of encephalitis is attended by a reduced function of glutamate receptors (NMDAR), which is caused by autoantibodies against these receptors in the brain.

Symptoms of the disease can be psychosis, movement disorders, epileptic seizures or reduction of cognitive performance in various shapes. However, as most studies are based on a generally fairly small number of patients, they neither cast a light on the relevance of NMDAR autoantibodies in the blood for the pathogenesis of the disease, nor do they yield data about their prevalence in healthy individuals.

Notable new findings are now provided by a new study conducted by Prof. Hannelore Ehrenreich and her team in cooperation with the Göttingen DFG Research Center and Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

The study demonstrates for the first time that NMDAR autoantibodies can be found in the serum of more than 10% of a total of nearly 3000 tested individuals, irrespective of whether they are patients or healthy individuals. Surprisingly, comparable autoantibody titers, antibody classes and functionalities were detected in healthy subjects and patients with a neuropsychiatric disease.

This insight led the authors of the study to the following central question: If, in fact, these autoantibodies play some pathological role, why do healthy individuals bearing them stay healthy?

In a series of animal experiments the scientists could demonstrate that the prerequisite for a triggering of symptoms by these autoantibodies, and thus for the pathogenesis of a disease process, is a dysfunction of the blood-brain barrier. This physiological barrier in a healthy organism delimits the central nervous system like a filter from the general blood stream and thus protects it from circulating pathogenic agents and toxins. A disruption of its natural barrier function enables the NMDAR autoantibodies circulating in the blood to enter the brain. This way, they reach the NMDA receptors located in the brain and can cause an impairment of function resulting in psychosis-similar symptoms, epileptic seizures or cognitive dysfunctions.

"In other words, more than 10% of all individuals carry a 'ticking time bomb', the disease relevance of which is only suppressed by an intact blood-brain barrier“, remarks Prof. Ehrenreich. An impaired blood brain barrier can be caused by a stroke, a brain trauma or by a viral infection, amongst others. In this context, the scientists performed an additional retrospective evaluation based on a large cohort of patients. They demonstrate an increase in the severity of neurological symptoms in subjects with a temporary or persisting blood-brain barrier dysfunction who carry NMDAR autoantibodies in their serum.

The authors of the study for the first time examined the question which factors are, in the end, responsible for triggering the generation of these NMDA autoantibodies. They found, on the one hand, an association of past influenza A or B infections with the appearance of these autoantibodies; on the other hand they identified by means of a genome-wide association study a genetic risk factor related to NMDAR biology.

The study published by first author Christian Hammer and coworkers is not only conceptually novel, it also yields considerable insight into a pathophysiological mechanism that is of crucial importance for neuropsychiatry and also for other clinical disciplines. The scientists commend that “patients with acute or chronic impairment of the blood-brain-barrier, e.g. after a brain injury, a stroke, any kind of encephalitis, epilepsy and also multiple sclerosis should be screened for the presence of NMDAR autoantibodies”. This might contribute to improve the course of disease by appropriate therapeutic methods and prevent long-term complications.

(cnmpb/mpiem)

Contact:
Max Planck Institute of Experimental Medicine
Clinical Neuroscience
Prof. Dr. Hannelore Ehrenreich (ehrenreich@em.mpg.de)
Phone 0551 / 39-3899 615
Hermann-Rein-Str. 3., 37075 Göttingen, Germany
Weitere Informationen:
http://www.ncbi.nlm.nih.gov/pubmed/23999527
- Original Publication
http://www.em.mpg.de/index.php
- Max Planck Institute of Experimental Medicine
http://www.cnmpb.de
- Cluster of Excellence and DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)

Dr. Heike Benecke | idw
Further information:
http://www.em.mpg.de/index.php

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>