Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A thirst for excitement is hidden in your genes

06.10.2010
Sensation seeking—the urge to do exciting things—has been linked to dopamine, a chemical that carries messages in your brain. For a new study published in Psychological Science, a journal of the Association for Psychological Science, scientists analyzed genes in the dopamine system and found a group of mutations that help predict whether someone is inclined toward sensation seeking.

Sensation seeking has been linked to a range of behavior disorders, such as drug addiction. It isn't all bad, though. "Not everyone who's high on sensation seeking becomes a drug addict. They may become an Army Ranger or an artist.

It's all in how you channel it," says Jaime Derringer, a PhD student at the University of Minnesota and the first author of the study. She wanted to use a new technique to find out more about the genetics of sensation seeking.

Most obvious connections with genes, like the BRCA gene that increases the risk for breast cancer, have already been found, Derringer says. Now new methods are letting scientists look for more subtle associations between genes and all kinds of traits, including behavior and personality.

Derringer used a kind of mutation in DNA called a single-nucleotide polymorphism, or SNP. A SNP is a change in just one "letter" of the DNA. She started by picking eight genes with various roles related to the neurotransmitter dopamine, which has been linked to sensation seeking in other studies. She looked at group of 635 people who were part of a study on addiction.

For each one, she had genetic information on 273 SNPs known to appear in those 8 genes and a score for how much they were inclined to sensation seeking. Using that data, she was able to narrow down the 273 SNPs to 12 potentially important ones. When she combined these 12 SNPs, they explained just under 4 percent of the difference between people in sensation seeking. This may not seem like a lot, but it's "quite large for a genetic study," Derringer says.

It's too soon to go out and start screening people for these mutations; not enough is known about how genes affect behavior. "One of the things we think is most exciting about this isn't necessarily the story about dopamine and sensation seeking," says Derringer. "It's rather the method that we're using. We used a sample of 635 people, which is extremely small, and we were still able to detect a significant effect. That's actually quite rare in these studies." She said the same method could be used to look at the link between biology and other behaviors—dopamine and cocaine dependence, for example, or serotonin and depression.

Eventually these methods could lead to tests that might help predict whether someone is likely to have problems later, and whether there should be early intervention to guide them down a healthier path.

For more information about this study, please contact Jaime Derringer at derri023@umn.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Predicting Sensation Seeking From Dopamine Genes: A Candidate-System Approach" and access to other Psychological Science research findings, please contact Keri Chiodo at 202-293-9300 or kchiodo@psychologicalscience.org

Keri Chiodo | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>