A thirst for blood sparks toxic algal blooms

“The behaviour of the algae can be compared to that of blood-sucking insects”, says Per Jonsson of the Department of Marine Ecology.

The blooming of toxic algae in the oceans and lakes is a familiar health risk and causes problems every summer, leading to increased costs for water cleaning, water consumption and the tourist industry. Scientists still do not know why algal blooms arise, and what it is that causes certain species of microalgae to multiply and form dense blooms.

New explanation

Scientists within the research platform MARICE (Marine Chemical Ecology) at the Faculty of Science, the University of Gothenburg, present a new possible explanation of why algal blooms arise in a study published in the international journal Proceedings of the National Academy of Sciences (PNAS).

Other factors

Current theory postulates that the algae produce toxins not only in order to inhibit the growth of competing species, but also to protect themselves from predators. The strategy of inhibiting competitors, however, is difficult to explain from an evolutionary perspective. The turbulent ocean surface means, quite simply, that it is difficult for one algal species to obtain exclusive rights on the effect of a toxin that inhibits competitors. The production of the toxin must be explained by other factors.

Kills competators

Marine ecologist Per Jonsson and his colleagues suggest that the inhibition of competitors that previous research had found is only a side-effect of a considerably more aggressive behaviour: toxic algae injure or kill competing algae in order to gain access to the nutrients in their cells.

Blood-sucking

“The way the algae absorb food is similar to that of blood-sucking insects, such as mosquitoes. Our study shows that this theft of nutrients may be an important mechanism in the formation of blooms of toxic plankton”, says Per Jonsson.

“The results will lead to several further experimental studies, and we hope that these will eventually contribute to solving the mystery of how algal blooms arise.”

The article, Formation of harmful algal blooms cannot be explained by allelopathic interactions, was published in PNAS on 15 June, and was written by Per Jonsson, Henrik Pavia and Gunilla Toth, all of whom are scientists working at the Department of Marine Ecology, University of Gothenburg.

Contact:
Per Jonsson, Department of Marine Ecology, the University of Gothenburg
Tel: +46 (0)526 68627
Mobile: +46 (0)732 594 366
per.jonsson@marecol.gu.se
Photograph: A light microscopy image of the microalga Chrysochromulina palpebralis. Photo: Sergio Seoane.

MARICE is an interdisciplinary research programme in the field of marine chemical ecology. Scientists from the Departments of Marine Ecology, Plant and Environmental Sciences, Cell and Molecular Biology and Chemistry participate in the programme. The MARICE website can be found here.

BY: Krister Svahn Krister Svahn
+46 (0)31 7864912
E-mail: krister.svahn@science.gu.se

Media Contact

Helena Aaberg idw

More Information:

http://www.gu.se/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors