Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Temporary storage for electrons

02.11.2012
A Natural method of producing hydrogen - Scientists at the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and the Ruhr-Universität Bochum (RUB) have found through spectroscopic investigations on a hydrogen-producing enzyme that the environment of the catalytic site acts as an electron reservoir in the enzyme.

Thus, it can very efficiently produce hydrogen, which has great potential as a renewable energy source. The research team describes their results in the journal “Angewandte Chemie”.


The green algae Chlamydomonas reinhardtii, from which the investigated [FeFe]-Hydrogenase was isolated
Foto: MPI CEC/RUB

Producing hydrogen with enzymes

The system analysed constitutes an enzyme that catalyses the formation and conversion of hydrogen. In its centre it has a double-iron core, and is therefore also called [FeFe] hydrogenase. Hydrogenases are of great interest for energy research, since they can efficiently produce hydrogen. However, new catalysts can only be developed given a deep understanding of their mode of action.

Electron transfer in several steps

In hydrogen production, two electrons get together with two protons. The research team showed that, as expected, the first electron is initially transferred to the iron centre of the enzyme. The second transfer on the other hand is to an iron-sulphur cluster that is located in the periphery. It thus forms a temporary storage for the second electron. This “super-reduced” state may be responsible for the extremely high efficiency of the hydrogenase. Subsequently both electrons are transferred in one step from the enzyme to the protons, so that hydrogen is generated. “Only the use of two different spectroscopic techniques made the discovery possible”, says Agnieszka Adamska, a doctoral student at MPI CEC who carried out the spectroscopic studies.

10,000 molecules of hydrogen per second

“Up to 10,000 molecules of hydrogen per second can be generated by a single [FeFe] centre”, says Camilla Lambertz, a postdoc at the RUB who prepared the biological samples for the project. The enzyme is thus among the most efficient hydrogenases and is therefore also being intensively investigated by biologists and chemists with a view to achieving environmentally friendly hydrogen production. The complete mechanism of hydrogen formation is, however, complex and several steps need to be clarified. Next, the researchers at MPI CEC and the Ruhr-Universität Bochum aim to use sensitive spectroscopic methods to locate the proton to which the two electrons are transferred. This negatively charged hydrogen atom (hydride) reacts with another proton to form hydrogen. Inspired by the [FeFe] hydrogenase, the researchers would like to develop their own hydrogen-producing catalysts that could be used for the generation of hydrogen.

Information about MPI CEC

The Max Planck Institute for Chemical Energy Conversion (MPI CEC) in Muelheim an der Ruhr focuses on fundamental chemical reactions, that play key roles for the storage and conversion of energy. The main objective is to store the energy provided by sunlight in small, energy rich molecules, and thus make it readily accessible independent of time and location. 75 scientists from more than 20 countries work in the three departments Heterogeneous Reactions, Molecular Theory and Spectroscopy and Biophysical Chemistry. The combination of their respective expertise contributes to the development of a sustainable energy concept.

Further information

Dr. Rebekka Loschen, Max Planck Institute for Chemical Energy Conversion,
Public Relations, 45470 Mülheim a.d.Ruhr, 0208/3063681
Bibliographic record
A. Adamska, A. Silakov, C. Lambertz, O. Rüdiger, T. Happe, E. Reijerse, W. Lubitz (2012): Identification and Characterization of the "Super-Reduced" State of the H-Cluster in [FeFe] Hydrogenase: A New Building Block for the Catalytic Cycle?, Angewandte Chemie International Edition, doi: 10.1002/anie.201204800

Dr. Rebekka Loschen | Max-Planck-Institut
Further information:
http://www.cec.mpg.de/
http://onlinelibrary.wiley.com/doi/10.1002/ange.201204800/abstract

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>