Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A possible new target for treatment of multiple sclerosis

28.03.2011
Damage to susceptible nerve cells can be reversed

The immune system recognizes and neutralizes or destroys toxins and foreign pathogens that have gained access to the body. Autoimmune diseases result when the system attacks the body's own tissues instead. One of the most common examples is multiple sclerosis (MS).

MS is a serious condition in which nerve-cell projections, or axons, in the brain and the spinal cord are destroyed as a result of misdirected inflammatory reactions. It is often characterized by an unpredictable course, with periods of remission being interrupted by episodes of relapse. A team of researchers led by LMU Munich Professor Martin Kerschensteiner of the Medical Center of the University of Munich and Professor Thomas Misgeld from the Technical University of Munich has now been able to explain how the damage is inflicted.

Their results reveal that the inflammatory reaction can induce a previously unknown type of axonal degeneration, which they call "focal axonal degeneration" (FAD). In an animal model of MS, this process is reversible if it is recognized and treated early, so the researchers believe that it could serve as a potential target for therapeutic intervention. "Development of an effective treatment will be a long-term project," cautions Kerschensteiner. "As yet, we only have a superficial understanding of the underlying molecular mechanisms and, of course, finding effective therapies will require time-consuming screens and extensive trials of drug candidates." (Nature Medicine online, 27 March 2011)

Multiple sclerosis is a common and, in many cases seriously disabling, autoimmune disease that can lead to the disturbance or loss of sensory function, voluntary movement, vision and bladder control. Commonly, it is thought that the primary target of MS is the myelin sheath, an insulating membrane that enwraps axons, and increases the speed of signal transmission. However, damage to nerve fibers is also a central process, as whether autoimmune pathology ultimately leads to permanent disability depends largely on how many nerve fibers are damaged over the course of time.

The team led by Kerschensteiner and Misgeld set out to define precisely how the damage to the nerve axons occurs. As Misgeld explains, "We used an animal model in which a subset of axons is genetically marked with a fluorescent protein, allowing us to observe them directly by fluorescence microscopy." After inoculation with myelin, these mice begin to show MS-like symptoms. But the researchers found that many axons showing early signs of damage were still surrounded by an intact myelin sheath, suggesting that loss of myelin is not a prerequisite for axonal damage.

Instead a previously unrecognized mechanism, termed focal axonal degeneration (FAD), is responsible for the primary damage. FAD can damage axons that are still wrapped in their protective myelin sheath. This process could also help explain some of the spontaneous remissions of symptoms that are characteristic of MS. "In its early stages, axonal damage is spontaneously reversible," says Kerschensteiner. "This finding gives us a better understanding of the disease, but it may also point to a new route to therapy, as processes that are in principle reversible should be more susceptible to treatment."

However, one must remember that it takes years to transform novel findings in basic research into effective therapies. First the process that leads to disease symptoms must be elucidated in molecular detail. In the case of MS it has already been suggested that reactive oxygen and nitrogen radicals play a significant role in facilitating the destruction of axons. These aggressive chemicals are produced by immune cells, and they disrupt and may ultimately destroy the mitochondria. Mitochondria are the cell's powerhouses, because they synthesize ATP, the universal energy source needed for the build-up and maintenance of cell structure and function.

"In our animal model, at least, we can neutralize these radicals and this allows acutely damaged axons to recover," says Kerschensteiner. The results of further studies on human tissues, carried out in collaboration with specialists based at the Universities of Göttingen and Geneva, are encouraging. The characteristic signs of the newly discovered process of degeneration can also be identified in brain tissue from patients with MS, suggesting that the basic principle of treatment used in the mouse model might also be effective in humans.

Even if this turns out to be the case, it would not mean that a new therapy would soon be at hand. The chemical agents used in the mouse experiments are not specific enough and not tolerated well enough to be of clinical use. "Before appropriate therapeutic strategies can be developed, we need to clarify exactly how the damage arises at the molecular level," says Kerschensteiner. "We also want to investigate whether similar mechanisms play a role in later chronic stages of multiple sclerosis ." (göd)

The work received generous support from the Deutsche Forschungsgemeinschaft (DFG), in the context of Sonderforschungsbereich 571 (Autoimmune disease: From symptoms via mechanism to therapy) and the Emmy Noether Program. The Hertie Foundation and the Alexander von Humboldt Foundation also contributed significantly to financing the project. The study was performed within the framework of the Center for Integrated Protein Science Munich (CIPSM) – a Cluster of Excellence – and the Multiple Sclerosis Competence Network set up by the Federal Ministry for Research and Technology.

Publication:

"A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis",
Ivana Nikiæ, Doron Merkler, Catherine Sorbara, Mary Brinkoetter, Mario Kreutzfeldt, Florence M Bareyre, Wolfgang Brück, Derron Bishop, Thomas Misgeld & Martin Kerschensteiner

Nature Medicine online, 27 March, 6 p.m. London time / 1 p.m. US Eastern time doi: 10.1038/nm.2324

Contact:

Prof. Thomas Misgeld
Chair for Biomedical Sensors
Institute of Neurosciences
Technical University of Munich
Phone: +49 (0) 89 / 4140 - 3512
E-mail: thomas.misgeld@lrz.tum.de
Web: www.misgeld-lab.me.tum.de/new

Prof. Martin Kerschensteiner | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>