Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tale of survival – scientists reveals how fish were able to colonise poisonous springs

12.05.2014

Hydrogen sulphide (H2S) is a potent inhibitor of aerobic respiration.

However populations of shortfin molly fish managed to colonise springs with high concentrations of dissolved hydrogen sulphide. In a new study researchers from LOEWE Biodiversity and Climate Research Centre (BiK-F) and the Goethe University Frankfurt am Main present evidence of genetic changes minimizing the harmful effects of H2S which enable the fish to survive in this deleterious environment.


Poecilia mexicana

Copyright: M. Pfenninger

The study provides insight into the molecular mechanisms of this key adaptation for the first time. It is published online today in "Nature Communications".

Shortfin molly fishes (Poecilia mexicana) may only measure a few inches, but they are still exceptional. Populations of Poecilia mexicana, whose relatives are the well-known guppy, colonised sulphide-rich volcanic springs in Southern Mexico. In making this particular habitat their home, they have made the impossible possible, because hydrogen sulphide (H2S), as for many other animal, is lethal. Even at low concentrations the gas blocks the cytochrome c oxidase-complex (COX). The higher the level of hydrogen sulphide, the more the activity of COX is inhibited. As it is essential for respiration, this turns out to be lethal in the end.

Changes in genetic make-up make less susceptible to poison
A team led by Prof. Dr. Markus Pfenninger, LOEWE Biodiversity and Climate Research Centre (BiK-F) and PD Dr. Martin Plath, Goethe University, has taken a closer look at the survivors. Their analysis showed that the COX activity of individuals of shortfin molly fish which colonise H2S-rich waters remains virtually unchanged under high H2S concentrations. This is due to a number of changes in the cox1 and cox3 genes, which have only occurred in populations living in the poisonous springs. Thus, transplanting individuals from non-sulphidic habitat to springs with high H2S levels kills them for sure.

Molecular mechanisms of adaptation to extreme habitat
"In this paper we analyse the key adaptation to an extreme habitat up to its molecular basis at the level of amino acids. This way, for the first time, we are able to point out, where exactly the adaption has taken place." Pfenninger concludes. The team also modelled three dimensional protein structures in order to shed light on necessary significant structural changes of amino acids in the cox1 gene. Without these structural changes, the colonisation of the H2S-containing water for the fish would have been impossible. By colonising the poisonous springs, where there are hardly any other competitors, the fish may feed on resistant midge larvae that also occur there.

Closely related fish follow different paths to adaptation
The study also shows that closely related populations of a species follow parallel as well as disparate paths in response to similar environmental conditions. Three shortfin molly fish populations were sampled for study. Two of the populations show the same changes in their genetic material in adapting to the hostile conditions. However this proved to be not the case for the third population of shortfin molly fish. Whereas these fish also tolerate high levels hydrogen sulphide, the mechanism enabling their adaptation is still subject to ongoing research.

Paper:
Pfenninger, M. et al.: Parallel evolution of cox-genes in H2S- tolerant fish as key adaptation to a toxic environment – Nature Communications, DOI: 10.1038/ncomms4873

For more information please contact:

Prof. Dr. Markus Pfenninger
Goethe University &
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1841
Pfenninger@bio.uni-frankfurt.de

or

Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de


LOEWE Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐ Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

For further details, please visit www.bik‐f.de

Sabine Wendler | Senckenberg

Further reports about: BiK-F Biodiversity Climate H2S LOEWE Poecilia mexicana Senckenberg amino environment mechanisms

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>