Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tale of survival – scientists reveals how fish were able to colonise poisonous springs

12.05.2014

Hydrogen sulphide (H2S) is a potent inhibitor of aerobic respiration.

However populations of shortfin molly fish managed to colonise springs with high concentrations of dissolved hydrogen sulphide. In a new study researchers from LOEWE Biodiversity and Climate Research Centre (BiK-F) and the Goethe University Frankfurt am Main present evidence of genetic changes minimizing the harmful effects of H2S which enable the fish to survive in this deleterious environment.


Poecilia mexicana

Copyright: M. Pfenninger

The study provides insight into the molecular mechanisms of this key adaptation for the first time. It is published online today in "Nature Communications".

Shortfin molly fishes (Poecilia mexicana) may only measure a few inches, but they are still exceptional. Populations of Poecilia mexicana, whose relatives are the well-known guppy, colonised sulphide-rich volcanic springs in Southern Mexico. In making this particular habitat their home, they have made the impossible possible, because hydrogen sulphide (H2S), as for many other animal, is lethal. Even at low concentrations the gas blocks the cytochrome c oxidase-complex (COX). The higher the level of hydrogen sulphide, the more the activity of COX is inhibited. As it is essential for respiration, this turns out to be lethal in the end.

Changes in genetic make-up make less susceptible to poison
A team led by Prof. Dr. Markus Pfenninger, LOEWE Biodiversity and Climate Research Centre (BiK-F) and PD Dr. Martin Plath, Goethe University, has taken a closer look at the survivors. Their analysis showed that the COX activity of individuals of shortfin molly fish which colonise H2S-rich waters remains virtually unchanged under high H2S concentrations. This is due to a number of changes in the cox1 and cox3 genes, which have only occurred in populations living in the poisonous springs. Thus, transplanting individuals from non-sulphidic habitat to springs with high H2S levels kills them for sure.

Molecular mechanisms of adaptation to extreme habitat
"In this paper we analyse the key adaptation to an extreme habitat up to its molecular basis at the level of amino acids. This way, for the first time, we are able to point out, where exactly the adaption has taken place." Pfenninger concludes. The team also modelled three dimensional protein structures in order to shed light on necessary significant structural changes of amino acids in the cox1 gene. Without these structural changes, the colonisation of the H2S-containing water for the fish would have been impossible. By colonising the poisonous springs, where there are hardly any other competitors, the fish may feed on resistant midge larvae that also occur there.

Closely related fish follow different paths to adaptation
The study also shows that closely related populations of a species follow parallel as well as disparate paths in response to similar environmental conditions. Three shortfin molly fish populations were sampled for study. Two of the populations show the same changes in their genetic material in adapting to the hostile conditions. However this proved to be not the case for the third population of shortfin molly fish. Whereas these fish also tolerate high levels hydrogen sulphide, the mechanism enabling their adaptation is still subject to ongoing research.

Paper:
Pfenninger, M. et al.: Parallel evolution of cox-genes in H2S- tolerant fish as key adaptation to a toxic environment – Nature Communications, DOI: 10.1038/ncomms4873

For more information please contact:

Prof. Dr. Markus Pfenninger
Goethe University &
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Tel. +49 (0)69 7542 1841
Pfenninger@bio.uni-frankfurt.de

or

Sabine Wendler
LOEWE Biodiversity and Climate Research Centre (BiK-F)
Press officer
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de


LOEWE Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐ Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

For further details, please visit www.bik‐f.de

Sabine Wendler | Senckenberg

Further reports about: BiK-F Biodiversity Climate H2S LOEWE Poecilia mexicana Senckenberg amino environment mechanisms

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>