Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting a Tail Up on Conservation?

02.09.2010
TAU develops advanced method for measuring lizard weight from size

Lizards are an important indicator species for understanding the condition of specific ecosystems. Their body weight is a crucial index for evaluating species health, but lizards are seldom weighed, perhaps due in part to the recurring problem of spontaneous tail loss when lizards are in stress.

Now ecological researchers have a better way of evaluating these lizards. Dr. Shai Meiri of Tel Aviv University's Department of Zoology has developed an improved tool for translating lizard body lengths to weights. Dr. Meiri's new equations calculate this valuable morphological feature to estimate the weight of a lizard species in a variety of different ecosystems.

"Body shape and body size are hugely important for the understanding of multiple ecological phenomena, but there is a need for a common metric to compare a multitude of different species," he says.

Building a lizard data bank

In a study published recently in the Journal of Zoology, Dr. Meiri evaluated hundreds of lizard species: long-bodied, legless species as well as stout, long-legged species; some that sit and wait for prey, others that are active foragers. Based on empirical evidence, such as well-established behavioral traits, he built a statistical model that could predict weights of lizards in a reliable, standardized manner, for use in the field or at the lab.

For the study, Dr. Meiri looked at a large sample of lizards — 900 species in 28 different families — and generated a dataset of lizard weights, using this dataset to develop formulae that derive body weights from the most commonly used size index for lizards (the length of the head and body, or "snout–vent length"). He then applied a species-level evolutionary hypothesis to examine the ecological factors that affect variation in weight–length relationships between different species.

Predicting post-disaster damage to the environment

How can this standardized metric protect our environment? "It can help answer how lizard species may react if there were major shifts in the availability of food due to climactic changes," he says.

In the future, zoologists will be able to use Dr. Meiri's method to better predict which communities of animals will shrink, grow or adapt to changing conditions, even after massive environmental disasters like the recent Gulf of Mexico oil spill.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org
http://www.aftau.org/site/News2?page=NewsArticle&id=12887

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>