Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A supercharged protein reduces damage from heart attack

02.03.2012
Researchers from the University of North Carolina at Chapel Hill reduced damage from a heart attack by 50 percent by enhancing a protective protein found in mice and humans.

The study, in which mice were bred to make a supercharged version of the protein focal adhesion kinase, or FAK, appeared March 1 in the online edition of the journal Arteriosclerosis, Thrombosis and Vascular Biology.


Following heart attack, heart cells are stressed due to lack of oxygen. When SuperFAK (in green) is expressed in the heart, it is further activated and protects heart cells from oxidative stress (in red). Credit: Joan Taylor, Ph.D

"This study shows that we can enhance existing cell survival pathways to protect heart cells during a heart attack," said Joan Taylor, PhD, associate professor in UNC's department of pathology and laboratory medicine. Taylor added that the findings could lead to new treatment approaches for heart attacks and may have broad implications for scientists seeking to manipulate the body's natural defensive systems.

During a heart attack, oxygen-deprived heart cells emit signals that activate the usually inert protein FAK, like the cry of a damsel in distress awakening her sleeping knight. If the gallant FAK arrives in time, it can save the cell and reduce permanent damage to the heart.

Taylor and her colleagues were intrigued by FAK's protective abilities. "We thought if we could activate FAK to a greater extent, then we could better protect those heart cells," said Taylor. Based on their previous studies that defined the signals induced by FAK in heart cells, they reasoned that expression of FAK set to an "always-on" position would eventually suffer uncontrolled inflammation and heart failure. "Simply having more of a good thing isn't always better," said Taylor. "The dynamics of the protein's activities are important to appropriately transmitting those survival signals."

The researchers then adjusted their formula to create a new protein they called "SuperFAK." To enhance its protective abilities without the harmful side effects, SuperFAK was primed for activation—ready to rush to the scene at the slightest provocation from stressed heart cells—but remained under the control of the mice's natural feedback systems that would shut it off when the crisis passed.

Mice with SuperFAK showed a much stronger FAK response during a heart attack than mice with the natural protein, and three days later had about 50 percent less heart damage. Critically, SuperFAK deactivated at the appropriate time, so the eight-week follow-up revealed no detrimental effects.

The findings offer evidence that, rather than simply activating or de-activating key proteins, researchers can benefit from a more nuanced approach that taps into the body's natural feedback loops. "I think folks could use this idea to exploit mutations in other molecules—by thinking about how to modify the protein so that it can be under natural controls," said Taylor. "Negative feedback loops are important because they 'reset' the system."

The findings also may help researchers augment FAK in patients undergoing chemotherapy. Some chemotherapy drugs are known to break down FAK, leaving patients' hearts more vulnerable to damage.

Co-authors included Zhaokang Cheng, Laura A. DiMichele, Zeenat S. Hakim, Mauricio Rojas and Christopher P. Mack. The research was supported by grants from the National Institutes of Health and the American Heart Association.

Les Lang | EurekAlert!
Further information:
http://www.med.unc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

Two-dimensional melting of hard spheres experimentally unravelled after 60 years

24.04.2017 | Life Sciences

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>