Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A supercharged protein reduces damage from heart attack

02.03.2012
Researchers from the University of North Carolina at Chapel Hill reduced damage from a heart attack by 50 percent by enhancing a protective protein found in mice and humans.

The study, in which mice were bred to make a supercharged version of the protein focal adhesion kinase, or FAK, appeared March 1 in the online edition of the journal Arteriosclerosis, Thrombosis and Vascular Biology.


Following heart attack, heart cells are stressed due to lack of oxygen. When SuperFAK (in green) is expressed in the heart, it is further activated and protects heart cells from oxidative stress (in red). Credit: Joan Taylor, Ph.D

"This study shows that we can enhance existing cell survival pathways to protect heart cells during a heart attack," said Joan Taylor, PhD, associate professor in UNC's department of pathology and laboratory medicine. Taylor added that the findings could lead to new treatment approaches for heart attacks and may have broad implications for scientists seeking to manipulate the body's natural defensive systems.

During a heart attack, oxygen-deprived heart cells emit signals that activate the usually inert protein FAK, like the cry of a damsel in distress awakening her sleeping knight. If the gallant FAK arrives in time, it can save the cell and reduce permanent damage to the heart.

Taylor and her colleagues were intrigued by FAK's protective abilities. "We thought if we could activate FAK to a greater extent, then we could better protect those heart cells," said Taylor. Based on their previous studies that defined the signals induced by FAK in heart cells, they reasoned that expression of FAK set to an "always-on" position would eventually suffer uncontrolled inflammation and heart failure. "Simply having more of a good thing isn't always better," said Taylor. "The dynamics of the protein's activities are important to appropriately transmitting those survival signals."

The researchers then adjusted their formula to create a new protein they called "SuperFAK." To enhance its protective abilities without the harmful side effects, SuperFAK was primed for activation—ready to rush to the scene at the slightest provocation from stressed heart cells—but remained under the control of the mice's natural feedback systems that would shut it off when the crisis passed.

Mice with SuperFAK showed a much stronger FAK response during a heart attack than mice with the natural protein, and three days later had about 50 percent less heart damage. Critically, SuperFAK deactivated at the appropriate time, so the eight-week follow-up revealed no detrimental effects.

The findings offer evidence that, rather than simply activating or de-activating key proteins, researchers can benefit from a more nuanced approach that taps into the body's natural feedback loops. "I think folks could use this idea to exploit mutations in other molecules—by thinking about how to modify the protein so that it can be under natural controls," said Taylor. "Negative feedback loops are important because they 'reset' the system."

The findings also may help researchers augment FAK in patients undergoing chemotherapy. Some chemotherapy drugs are known to break down FAK, leaving patients' hearts more vulnerable to damage.

Co-authors included Zhaokang Cheng, Laura A. DiMichele, Zeenat S. Hakim, Mauricio Rojas and Christopher P. Mack. The research was supported by grants from the National Institutes of Health and the American Heart Association.

Les Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>