Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A study using Drosophila flies reveals new regulatory mechanisms of cell migration


The study by Sofia J. Araújo sheds light on the fields of development, wound healing, angiogenesis, and tumour invasion, processes in which cell migration is crucial.

A study by Sofia J. Araújo, a Ramón y Cajal researcher with the Morphogenesis in Drosophila lab at the Institute for Research in Biomedicine (IRB), elucidates the genetic regulation of cell migration.

Tracheas of the fruit fly Drosophila melanogaster (in blue and red) are a good model to study cell migration (Author: E Butí, IRB)

Published today in the scientific journal Plos One, the research is part of the thesis work performed by Elisenda Butí, first author of the article.

Cell migration is highly coordinated and occurs in processes such as embryonic development, wound healing, the formation of new blood vessels, and tumour cell invasion. For the successful control of cell movement, this process has to be determined and maintained with great precision.

... more about:
»Drosophila »mechanisms »regulatory

In this study, the scientists used tracheal cells of the fruit fly Drosophila melanogaster to unravel the signalling mechanism involved in the regulation of cell movements.

The research describes a new molecular component that controls the expression of a molecule named Fibroblast Growth Factor (FGF) in Drosophila embryos. The importance of FGF in cell migration was already known but little information was available on its genetic regulation.

In the study, Araújo and her team have discovered that a protein called Hedgehog, known to be involved in morphogenesis, regulates FGF expression.

“This is the first time that a direct connection has been demonstrated between the Hedgehog pathway and an increase in FGF during cell migration,” says Araújo.

The results are really interesting for biomedicine,” explains the researcher, “as the Hedgehog pathway is overexpressed in some of the most invasive tumours, such as the most common kind of skin cancer.”

The team explains that this is a step forward for research into cell migration mechanisms and that future applications will emerge as further investigation and studies are conducted.

Reference article:
Hedgehog is a positive regulator of FGF signalling during embryonic cell migration
Elisenda Butí, Duarte Mesquita and Sofia J. Araújo
Plos One (2014) 10.1371/journal.pone.0092682

Sònia Armengou | EurekAlert!

Further reports about: Drosophila mechanisms regulatory

More articles from Life Sciences:

nachricht Two decades of training students and experts in tracking infectious disease
27.11.2015 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Increased carbon dioxide enhances plankton growth, opposite of what was expected
27.11.2015 | Bigelow Laboratory for Ocean Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Increased carbon dioxide enhances plankton growth, opposite of what was expected

27.11.2015 | Life Sciences

Graphene microphone outperforms traditional nickel and offers ultrasonic reach

27.11.2015 | Physics and Astronomy

Rapid plankton growth in ocean seen as sign of carbon dioxide loading

27.11.2015 | Earth Sciences

More VideoLinks >>>