Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study using Drosophila flies reveals new regulatory mechanisms of cell migration

21.03.2014

The study by Sofia J. Araújo sheds light on the fields of development, wound healing, angiogenesis, and tumour invasion, processes in which cell migration is crucial.

A study by Sofia J. Araújo, a Ramón y Cajal researcher with the Morphogenesis in Drosophila lab at the Institute for Research in Biomedicine (IRB), elucidates the genetic regulation of cell migration.


Tracheas of the fruit fly Drosophila melanogaster (in blue and red) are a good model to study cell migration (Author: E Butí, IRB)

Published today in the scientific journal Plos One, the research is part of the thesis work performed by Elisenda Butí, first author of the article.

Cell migration is highly coordinated and occurs in processes such as embryonic development, wound healing, the formation of new blood vessels, and tumour cell invasion. For the successful control of cell movement, this process has to be determined and maintained with great precision.

... more about:
»Drosophila »mechanisms »regulatory

In this study, the scientists used tracheal cells of the fruit fly Drosophila melanogaster to unravel the signalling mechanism involved in the regulation of cell movements.

The research describes a new molecular component that controls the expression of a molecule named Fibroblast Growth Factor (FGF) in Drosophila embryos. The importance of FGF in cell migration was already known but little information was available on its genetic regulation.

In the study, Araújo and her team have discovered that a protein called Hedgehog, known to be involved in morphogenesis, regulates FGF expression.

“This is the first time that a direct connection has been demonstrated between the Hedgehog pathway and an increase in FGF during cell migration,” says Araújo.

The results are really interesting for biomedicine,” explains the researcher, “as the Hedgehog pathway is overexpressed in some of the most invasive tumours, such as the most common kind of skin cancer.”

The team explains that this is a step forward for research into cell migration mechanisms and that future applications will emerge as further investigation and studies are conducted.

Reference article:
Hedgehog is a positive regulator of FGF signalling during embryonic cell migration
Elisenda Butí, Duarte Mesquita and Sofia J. Araújo
Plos One (2014) 10.1371/journal.pone.0092682

Sònia Armengou | EurekAlert!

Further reports about: Drosophila mechanisms regulatory

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>