Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less of a stink in diabetes patients?

18.03.2009
Levels of rotten egg gas shown to be lower in patients with diabetes and influence how blood vessels work

Hydrogen sulfide (H2S) is commonly associated with smell of rotten eggs, stink bombs and blocked drains but lower blood levels of the gas are possibly linked to cardiovascular complications in some male patients with type II diabetes, according to research recently presented by researchers at the Peninsula Medical School in the South West of England at the Annual Diabetes UK Professional Conference in Glasgow this week and published in Diabetic Medicine.

H2S is produced naturally within our bodies, along with other chemical compounds such as nitric oxide, where it is believed to help regulate blood pressure. Research shows that a balance between these compounds relates to good health, whereas an imbalance could indicate disease. In the case of diabetes, common complications of the disease are high blood pressure and microvascular dysfunction, which leads to damage of the tiny blood vessels (microvessels) that deliver blood, oxygen and nutrients to the eyes, skin, nerves and kidney.

Dr. Matt Whiteman of the Peninsula Medical School and colleagues from the Peninsula National Institute for Health Research (NIHR) Clinical Research Facility have compared the levels of H2S in blood samples taken from healthy people and male patients with type II diabetes and found markedly decreased levels of H2S in the diabetes patients. Lower H2S levels were associated with clinical markers of impaired microvessel function suggesting that a loss of this blood pressure lowering gas could be a contributing factor in the development of vascular complications in patients with diabetes.

Previous work on H2S has almost exclusively been carried out on animals in the laboratory however work carried out at PMS in the recently opened Peninsula NIHR Clinical Research Facility has been the first to investigate the role of H2S in any disease in humans. Dr. Whiteman commented: "Our previous work in the test tube has shown the potential for H2S to mediate blood pressure regulation. However, this is the first study examining H2S levels in a human disease with relevant clinical indices of vascular health."

He added: "It would appear that in this study, male patients with diabetes have lower levels of H2S in their blood compared to otherwise healthy males of the same age. Lower levels of H2S could effect how blood vessels dilate. Although these are early days in a new field of research, manipulation of H2S levels by novel or existing pharmacological or even dietary means in the future could help treat or prevent cardiovascular complications caused by diabetes and other related conditions."

Andrew Gould | EurekAlert!
Further information:
http://www.pms.ac.uk

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>