A sticky solution for identifying effective probiotics

“Probiotics need to interact with cells lining the gut to have a beneficial effect, and if they attach to surfaces in the gut they are more likely to stick around long enough to exert their activity,” says Dr Nathalie Juge from the Institute of Food Research. IFR is an Institute of the Biotechnology and Biological Sciences Research Council, which funded the research.

The gut is the largest immune system organ in the body. The cells lining the gut are covered in a protective layer of mucus that is continuously renewed by specialised cells. As well as protecting the gut lining, mucus provides an attachment site for beneficial bacteria that help maintain normal gut function.

Mucus adhesion has been well studied for pathogenic bacteria, but precisely what enables commensal (our gut bacteria) bacteria to stick is not known. In a paper published in the Journal of Biological Chemistry, IFR and University of East Anglia scientists have obtained the first crystal structure of a mucus-binding protein.

The protein was obtained from a strain of Lactobacillus reuteri, a lactic acid bacterium naturally found in the gastrointestinal tract. Lactic acid bacteria are the most common microorganisms used as probiotics.

These mucus-binding proteins are more abundant in lactic acid bacteria than other types and particularly in strains that inhabit the gut. The presence of the proteins may contribute to the ability of lactic acid bacteria to interact with the host.

The team of scientists found that these mucus-binding proteins also recognise human immunoglobulin proteins. These are an integral part of the immune system. Mucus-binding proteins may therefore also play a wider role in gut health as a site of attachment for bacteria.

“The strain-specificity of these proteins demonstrates the need for the careful molecular design and selection of probiotics,” says Dr Juge. “This also opens new avenues of research to study the fundamental roles bacteria play in the gastrointestinal tract.”

Media Contact

Andrew Chapple EurekAlert!

More Information:

http://www.bbsrc.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors