Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Step towards "Computational Experiments"

04.10.2011
Scientists develop the most advanced computer model to-date of the scattering of polarized light from chiral molecules

An international research team has described the first calculations of Raman optical activity (ROA) spectra using coupled-cluster theory – one of the most reliable quantum chemical methods available.

ROA is a valuable tool for the structural characterization of a wide range of molecules, including large biomolecules such as viruses and proteins for which the technique holds a particular prominence. “We have developed the most advanced computer model to-date of the scattering of polarized light from chiral molecules”, says T. Daniel Crawford, researcher at Virginia Tech (USA), who carried out the simulations together with Kenneth Ruud of the University of Tromsø (Norway).

Chirality – or handedness – is a very important property in chemistry. The new results are presented in the journal ChemPhysChem.

A long-term goal of this area of research is to enable laboratory chemists to carry out their own simulations to study compounds ranging from small molecules to pharmaceuticals and viruses. “This will allow them to identify which ‘hand’ of the compound reacts in a desired way –from providing a certain scent to fighting tumors”, Crawford says. He points out that the model developed by him and his Norwegian colleague is capable of providing predictions of many molecular properties that equal –and sometimes exceed– the accuracy of even the best available experiments. Besides describing the fundamental theoretical aspects of the coupled-cluster functions used in the calculation of ROA spectra, Crawford and Ruud have demonstrated the effectiveness of their method through benchmark computations on (S)-methyloxirane –a compound for which experimental gas-phase data are available. Such rare experimental data, which are free of perturbative solvent effects, provide an excellent testing ground for advanced quantum-chemical methods.

According to the researchers, their future work will focus on more systematic comparisons between coupled-cluster ROA spectra and both density functional theory (DFT) and experiment, including more molecular examples. “Ultimately, we and the world's other quantum chemists seek to carry out ‘computational experiments’ that will provide reliable data more quickly, more safely, and with less expense than laboratory analyses”, Crawford adds.

Author: Daniel Crawford, Virginia Polytechnic Institute, Blacksburg (USA), http://www.chem.vt.edu/people/faculty/crawford-daniel/index.html
Title: Coupled-Cluster Calculations of Vibrational Raman Optical Activity Spectra

ChemPhysChem, Permalink to the article: http://dx.doi.org/10.1002/cphc.201100547

Daniel Crawford | Angewandte Chemie
Further information:
http://www.wiley.com

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>