Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Step towards "Computational Experiments"

04.10.2011
Scientists develop the most advanced computer model to-date of the scattering of polarized light from chiral molecules

An international research team has described the first calculations of Raman optical activity (ROA) spectra using coupled-cluster theory – one of the most reliable quantum chemical methods available.

ROA is a valuable tool for the structural characterization of a wide range of molecules, including large biomolecules such as viruses and proteins for which the technique holds a particular prominence. “We have developed the most advanced computer model to-date of the scattering of polarized light from chiral molecules”, says T. Daniel Crawford, researcher at Virginia Tech (USA), who carried out the simulations together with Kenneth Ruud of the University of Tromsø (Norway).

Chirality – or handedness – is a very important property in chemistry. The new results are presented in the journal ChemPhysChem.

A long-term goal of this area of research is to enable laboratory chemists to carry out their own simulations to study compounds ranging from small molecules to pharmaceuticals and viruses. “This will allow them to identify which ‘hand’ of the compound reacts in a desired way –from providing a certain scent to fighting tumors”, Crawford says. He points out that the model developed by him and his Norwegian colleague is capable of providing predictions of many molecular properties that equal –and sometimes exceed– the accuracy of even the best available experiments. Besides describing the fundamental theoretical aspects of the coupled-cluster functions used in the calculation of ROA spectra, Crawford and Ruud have demonstrated the effectiveness of their method through benchmark computations on (S)-methyloxirane –a compound for which experimental gas-phase data are available. Such rare experimental data, which are free of perturbative solvent effects, provide an excellent testing ground for advanced quantum-chemical methods.

According to the researchers, their future work will focus on more systematic comparisons between coupled-cluster ROA spectra and both density functional theory (DFT) and experiment, including more molecular examples. “Ultimately, we and the world's other quantum chemists seek to carry out ‘computational experiments’ that will provide reliable data more quickly, more safely, and with less expense than laboratory analyses”, Crawford adds.

Author: Daniel Crawford, Virginia Polytechnic Institute, Blacksburg (USA), http://www.chem.vt.edu/people/faculty/crawford-daniel/index.html
Title: Coupled-Cluster Calculations of Vibrational Raman Optical Activity Spectra

ChemPhysChem, Permalink to the article: http://dx.doi.org/10.1002/cphc.201100547

Daniel Crawford | Angewandte Chemie
Further information:
http://www.wiley.com

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>