Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step forward in regenerating and repairing damaged nerve cells

22.11.2012
IRCM researchers discover a nerve cell’s internal clock
A team of IRCM researchers, led by Dr. Frédéric Charron, recently uncovered a nerve cell’s internal clock, used during embryonic development. The discovery was made in collaboration with Dr. Alyson Fournier’s laboratory at the Montreal Neurological Institute. Published today in the prestigious scientific journal Neuron, this breakthrough could lead to the development of new tools to repair and regenerate nerve cells following injuries to the central nervous system.

Researchers in Dr. Charron’s laboratory study neurons, which are the nerve cells that make up the central nervous system (brain and spinal cord). They want to better understand how neurons navigate through the developing embryo to arrive at their correct destination.

“To properly form neural circuits, developing axons (long extensions of neurons that form nerves) follow external signals to reach the right targets,” says Dr. Frédéric Charron, Director of the Molecular Biology of Neural Development research unit at the IRCM. “We discovered that nerve cells also have an internal clock, which changes their response to external signals as they develop over time.”

For this research project, IRCM scientists focused on the Sonic Hedgehog (Shh) protein, which gives cells important information for the embryo to develop properly and plays a critical role in the development of the central nervous system.

“It is known that axons follow the Shh signal during their development,” explains Dr. Patricia Yam, research associate in Dr. Charron’s laboratory and first author of the study. “However, axons change their behaviour once they reach this protein, and this has been a mystery for the scientific community. We found that a nerve cell’s internal clock switches its response to external signals when it reaches the Shh protein, at which time it becomes repelled by the Shh signal rather than following it.”

“Our findings therefore showed that more than one system is involved in directing axon pathfinding during development,” adds Dr. Yam. “Not only do nerve cells respond to external signals, but they also have an internal control system. This discovery is important because it offers new possibilities for developing techniques to regenerate and repair damaged nerve cells. Along with trying to modify external factors, we can now also consider modifying elements inside a cell in order to change its behaviour.”

Injuries to the central nervous system affect thousands of Canadians every year, and can lead to lifelong disabilities. Most often caused by an accident, stroke or disease, these injuries are very difficult to repair. New tools are therefore required to repair damage to the central nervous system, including techniques that could potentially regenerate nerve cells.

"The Canadian Institutes of Health Research is delighted to support research aimed at improving the lives of individuals with damage to the brain or spinal cord," says Dr. Anthony Phillips, Scientific Director of CIHR’s Institute of Neurosciences, Mental Health and Addiction. ''Nerve cell repair and regeneration remains an important health challenge, and we believe that Dr. Charron's research findings will contribute to the solution."

About the research project
This research project was funded by grants from the Canadian Institutes of Health Research (CIHR), the Peter Lougheed Medical Research Foundation, the McGill Program in NeuroEngineering and the Fonds de recherche de Québec – Santé (FRQS). The article published in Neuron was a collaborative project between Dr. Charron’s team and Dr. Alyson Fournier’s laboratory at the Montreal Neurological Institute (Department of Neurology and Neurosurgery). Collaborators from the IRCM include Steves Morin, W. Todd Farmer and Léa Lepelletier.

For more information on this scientific breakthrough, please refer to the article summary published online by Neuron: www.cell.com/neuron/abstract/S0896-6273(12)00852-5.

About Dr. Frédéric Charron
Frédéric Charron obtained his PhD in experimental medicine from McGill University. He is an Associate IRCM Research Professor and Director of the Molecular Biology of Neural Development research unit. Dr. Charron is also Associate Professor-Researcher in the Department of Medicine at the Université de Montréal, and Adjunct Professor in the Department of Medicine (Division of Experimental Medicine), the Department of Biology, and the Department of Anatomy and Cell Biology at McGill University. In addition, he is a member of the McGill Integrated Program in Neuroscience, the Montreal Regional Brain Tumor Research Group at the Montreal Neurological Institute, and the Centre of Excellence in Neurosciences (CENUM) at the Université de Montréal. Dr. Charron is a Research Scholar from the Fonds de recherche du Québec – Santé (FRQS). For more information, visit www.ircm.qc.ca/charron.

About the IRCM
Founded in 1967, the Institut de recherches cliniques de Montréal (IRCM) (www.ircm.qc.ca) is currently comprised of 37 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, eight core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l’Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

About the Canadian Institutes of Health Research (CIHR)
CIHR is the Government of Canada's health research investment agency. CIHR's mission is to create new scientific knowledge and enable its translation into better health, more effective health services and products, and a stronger Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada.

For more information and to schedule an interview with Dr. Charron, please contact:

Julie Langelier
Communications Officer (IRCM)
julie.langelier@ircm.qc.ca
(514) 987-5555

Lucette Thériault
Communications Director (IRCM)
lucette.theriault@ircm.qc.ca
(514) 987-55

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>